The use and applicability of machine learning algorithms in predicting the surgical outcome for patients with benign prostatic enlargement. Which model to use?

随机森林 机器学习 均方误差 算法 人工智能 计算机科学 多层感知器 决策树 皮尔逊积矩相关系数 人工神经网络 数学 统计
作者
Panagiotis Mourmouris,Lazaros Tzelves,Georgios Feretzakis,Dimitris Kalles,Ioannis Manolitsis,Marinos Berdempes,Ioannis Varkarakis,Andreas Skolarikos
出处
期刊:Archivio italiano di urologia, andrologia [PAGEPress (Italy)]
卷期号:93 (4): 418-424 被引量:1
标识
DOI:10.4081/aiua.2021.4.418
摘要

Artificial intelligence (AI) is increasingly used in medicine, but data on benign prostatic enlargement (BPE) management are lacking. This study aims to test the performance of several machine learning algorithms, in predicting clinical outcomes during BPE surgical management.Clinical data were extracted from a prospectively collected database for 153 men with BPE, treated with transurethral resection (monopolar or bipolar) or vaporization of the prostate. Due to small sample size, we applied a method for increasing our dataset, Synthetic Minority Oversampling Technique (SMOTE). The new dataset created with SMOTE has been expanded by 453 synthetic instances, in addition to the original 153. The WEKA Data Mining Software was used for constructing predictive models, while several appropriate statistical measures, like Correlation coefficient (R), Mean Absolute Error (MAE), Root Mean-Squared Error (RMSE), were calculated with several supervised regression algorithms - techniques (Linear Regression, Multilayer Perceptron, SMOreg, k-Nearest Neighbors, Bagging, M5Rules, M5P - Pruned Model Tree, and Random forest).The baseline characteristics of patients were extracted, with age, prostate volume, method of operation, baseline Qmax and baseline IPSS being used as independent variables. Using the Random Forest algorithm resulted in values of R, MAE, RMSE that indicate the ability of these models to better predict % Qmax increase. The Random Forest model also demonstrated the best results in R, MAE, RMSE for predicting % IPSS reduction.Machine Learning techniques can be used for making predictions regarding clinical outcomes of surgical BPRE management. Wider-scale validation studies are necessary to strengthen our results in choosing the best model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助xiaohuang采纳,获得10
刚刚
自由月亮完成签到 ,获得积分10
1秒前
1秒前
2秒前
iNk应助idynamics采纳,获得10
3秒前
零吾完成签到 ,获得积分10
3秒前
李健应助叮当的猫采纳,获得10
3秒前
西西完成签到,获得积分10
4秒前
4秒前
su完成签到,获得积分10
4秒前
遇上就这样吧应助saintly919采纳,获得30
5秒前
秀丽的小懒虫完成签到,获得积分10
6秒前
冯梦梦完成签到 ,获得积分10
6秒前
Jialing完成签到,获得积分10
6秒前
噜噜噜噜噜完成签到,获得积分10
6秒前
sanbai-li应助mingming采纳,获得10
8秒前
科研通AI5应助cugwzr采纳,获得10
8秒前
8秒前
尊敬的夏槐完成签到,获得积分10
8秒前
乐意发布了新的文献求助10
9秒前
自然沁完成签到,获得积分10
9秒前
WW完成签到,获得积分10
9秒前
sjw525完成签到,获得积分10
10秒前
12秒前
12秒前
13秒前
开朗的鞋子完成签到,获得积分10
14秒前
醉书生应助留胡子的夜白采纳,获得20
14秒前
yq发布了新的文献求助10
15秒前
15秒前
16秒前
gemn完成签到,获得积分10
16秒前
冬瓜完成签到,获得积分10
16秒前
初心完成签到 ,获得积分10
17秒前
橘子的哈哈怪完成签到,获得积分10
17秒前
19秒前
可爱沛蓝完成签到 ,获得积分10
19秒前
SRQ发布了新的文献求助10
20秒前
八位元完成签到,获得积分10
20秒前
cugwzr发布了新的文献求助10
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798603
求助须知:如何正确求助?哪些是违规求助? 3344274
关于积分的说明 10319445
捐赠科研通 3060850
什么是DOI,文献DOI怎么找? 1679798
邀请新用户注册赠送积分活动 806778
科研通“疑难数据库(出版商)”最低求助积分说明 763372