Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study

医学 磁共振成像 磁共振弥散成像 回顾性队列研究 对比度(视觉) 核医学 流体衰减反转恢复 队列 放射科 内科学 人工智能 计算机科学
作者
Chandrakanth Jayachandran Preetha,Hagen Meredig,Gianluca Brugnara,Mustafa Ahmed Mahmutoglu,Martha Foltyn,Fabian Isensee,Tobias Keßler,Irada Pflüger,Marianne Schell,Ulf Neuberger,Jens Petersen,Antje Wick,Sabine Heiland,Jürgen Debus,Michael Platten,Ahmed Idbaïh,Alba A. Brandes,Frank Winkler,Martin J. van den Bent,Burt Nabors
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:3 (12): e784-e794 被引量:38
标识
DOI:10.1016/s2589-7500(21)00205-3
摘要

BackgroundGadolinium-based contrast agents (GBCAs) are widely used to enhance tissue contrast during MRI scans and play a crucial role in the management of patients with cancer. However, studies have shown gadolinium deposition in the brain after repeated GBCA administration with yet unknown clinical significance. We aimed to assess the feasibility and diagnostic value of synthetic post-contrast T1-weighted MRI generated from pre-contrast MRI sequences through deep convolutional neural networks (dCNN) for tumour response assessment in neuro-oncology.MethodsIn this multicentre, retrospective cohort study, we used MRI examinations to train and validate a dCNN for synthesising post-contrast T1-weighted sequences from pre-contrast T1-weighted, T2-weighted, and fluid-attenuated inversion recovery sequences. We used MRI scans with availability of these sequences from 775 patients with glioblastoma treated at Heidelberg University Hospital, Heidelberg, Germany (775 MRI examinations); 260 patients who participated in the phase 2 CORE trial (1083 MRI examinations, 59 institutions); and 505 patients who participated in the phase 3 CENTRIC trial (3147 MRI examinations, 149 institutions). Separate training runs to rank the importance of individual sequences and (for a subset) diffusion-weighted imaging were conducted. Independent testing was performed on MRI data from the phase 2 and phase 3 EORTC-26101 trial (521 patients, 1924 MRI examinations, 32 institutions). The similarity between synthetic and true contrast enhancement on post-contrast T1-weighted MRI was quantified using the structural similarity index measure (SSIM). Automated tumour segmentation and volumetric tumour response assessment based on synthetic versus true post-contrast T1-weighted sequences was performed in the EORTC-26101 trial and agreement was assessed with Kaplan-Meier plots.FindingsThe median SSIM score for predicting contrast enhancement on synthetic post-contrast T1-weighted sequences in the EORTC-26101 test set was 0·818 (95% CI 0·817–0·820). Segmentation of the contrast-enhancing tumour from synthetic post-contrast T1-weighted sequences yielded a median tumour volume of 6·31 cm3 (5·60 to 7·14), thereby underestimating the true tumour volume by a median of −0·48 cm3 (−0·37 to −0·76) with the concordance correlation coefficient suggesting a strong linear association between tumour volumes derived from synthetic versus true post-contrast T1-weighted sequences (0·782, 0·751–0·807, p<0·0001). Volumetric tumour response assessment in the EORTC-26101 trial showed a median time to progression of 4·2 months (95% CI 4·1–5·2) with synthetic post-contrast T1-weighted and 4·3 months (4·1–5·5) with true post-contrast T1-weighted sequences (p=0·33). The strength of the association between the time to progression as a surrogate endpoint for predicting the patients' overall survival in the EORTC-26101 cohort was similar when derived from synthetic post-contrast T1-weighted sequences (hazard ratio of 1·749, 95% CI 1·282–2·387, p=0·0004) and model C-index (0·667, 0·622–0·708) versus true post-contrast T1-weighted MRI (1·799, 95% CI 1·314–2·464, p=0·0003) and model C-index (0·673, 95% CI 0·626–0·711).InterpretationGenerating synthetic post-contrast T1-weighted MRI from pre-contrast MRI using dCNN is feasible and quantification of the contrast-enhancing tumour burden from synthetic post-contrast T1-weighted MRI allows assessment of the patient's response to treatment with no significant difference by comparison with true post-contrast T1-weighted sequences with administration of GBCAs. This finding could guide the application of dCNN in radiology to potentially reduce the necessity of GBCA administration.FundingDeutsche Forschungsgemeinschaft.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
董菲音完成签到,获得积分10
3秒前
phw发布了新的文献求助10
3秒前
3秒前
风未见的曾经完成签到,获得积分10
3秒前
waaan完成签到 ,获得积分10
4秒前
大猫完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
7秒前
带志发布了新的文献求助10
7秒前
WXT关闭了WXT文献求助
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
狂野的衣完成签到,获得积分10
8秒前
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
fendy应助科研通管家采纳,获得30
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
彩虹儿应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
9秒前
嘿嘿应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
核桃应助科研通管家采纳,获得10
9秒前
9秒前
思源应助科研通管家采纳,获得10
10秒前
嘿嘿应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
俭朴夜香应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
粉色完成签到,获得积分10
11秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4241427
求助须知:如何正确求助?哪些是违规求助? 3775067
关于积分的说明 11854892
捐赠科研通 3429960
什么是DOI,文献DOI怎么找? 1882634
邀请新用户注册赠送积分活动 934495
科研通“疑难数据库(出版商)”最低求助积分说明 841041