亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lithium-ion battery degradation: how to model it

降级(电信) 电池(电) 担保 计算机科学 汽车工业 锂(药物) 容量损失 可靠性工程 锂离子电池 工程类 航空航天工程 电信 物理 医学 功率(物理) 量子力学 内分泌学 政治学 法学
作者
Simon O’Kane,Weilong Ai,Ganesh Madabattula,Diego Alonso‐Álvarez,Robert Timms,Valentin Sulzer,Jacqueline Edge,Billy Wu,Gregory J. Offer,Monica Marinescu
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:24 (13): 7909-7922 被引量:179
标识
DOI:10.1039/d2cp00417h
摘要

Predicting lithium-ion battery degradation is worth billions to the global automotive, aviation and energy storage industries, to improve performance and safety and reduce warranty liabilities. However, very few published models of battery degradation explicitly consider the interactions between more than two degradation mechanisms, and none do so within a single electrode. In this paper, the first published attempt to directly couple more than two degradation mechanisms in the negative electrode is reported. The results are used to map different pathways through the complicated path dependent and non-linear degradation space. Four degradation mechanisms are coupled in PyBaMM, an open source modelling environment uniquely developed to allow new physics to be implemented and explored quickly and easily. Crucially it is possible to see 'inside' the model and observe the consequences of the different patterns of degradation, such as loss of lithium inventory and loss of active material. For the same cell, five different pathways that can result in end-of-life have already been found, depending on how the cell is used. Such information would enable a product designer to either extend life or predict life based upon the usage pattern. However, parameterization of the degradation models remains as a major challenge, and requires the attention of the international battery community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
三个气的大门完成签到 ,获得积分10
30秒前
科目三应助liam采纳,获得10
35秒前
44秒前
光合作用完成签到,获得积分10
54秒前
Chi完成签到 ,获得积分20
1分钟前
Chi关注了科研通微信公众号
1分钟前
甜美的秋尽完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Chi发布了新的文献求助60
1分钟前
sunday2024完成签到,获得积分10
1分钟前
Akim应助一个小胖子采纳,获得10
1分钟前
2分钟前
liam发布了新的文献求助10
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
科研通AI5应助liam采纳,获得10
2分钟前
2分钟前
3分钟前
一个小胖子完成签到,获得积分10
3分钟前
YifanWang应助一个小胖子采纳,获得10
3分钟前
草木发布了新的文献求助10
4分钟前
4分钟前
YifanWang应助一个小胖子采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
maggiexjl完成签到,获得积分10
4分钟前
liam发布了新的文献求助10
4分钟前
草木发布了新的文献求助10
4分钟前
YifanWang应助一个小胖子采纳,获得10
4分钟前
juan完成签到 ,获得积分10
4分钟前
来日昭昭应助一个小胖子采纳,获得10
4分钟前
大个应助一个小胖子采纳,获得10
5分钟前
科研通AI5应助liam采纳,获得10
5分钟前
刘刘完成签到 ,获得积分10
5分钟前
敉_发布了新的文献求助10
5分钟前
6分钟前
下午好完成签到 ,获得积分10
6分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837486
求助须知:如何正确求助?哪些是违规求助? 3379589
关于积分的说明 10509939
捐赠科研通 3099208
什么是DOI,文献DOI怎么找? 1707000
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772586