焦虑
唤醒
心理学
步态
功能磁共振成像
认知
神经科学
物理医学与康复
医学
精神科
作者
Natasha L. Taylor,Gabriel Wainstein,Dione Y. L. Quek,Simon J.G. Lewis,James M. Shine,Kaylena A. Ehgoetz Martens
摘要
Abstract Background Freezing of gait is a complex paroxysmal phenomenon that is associated with a variety of sensorimotor, cognitive and affective deficits, and significantly impacts quality of life in patients with Parkinson's disease (PD). Despite a growing body of evidence that suggests anxiety may be a crucial contributor to freezing of gait, no research study to date has investigated neural underpinnings of anxiety‐induced freezing of gait. Objective Here, we aimed to investigate how anxiety‐inducing contexts might “set the stage for freezing,” through the ascending arousal system, by examining an anxiety‐inducing virtual reality gait paradigm inside functional magnetic resonance imaging (fMRI). Methods We used a virtual reality gait paradigm that has been validated to elicit anxiety by having participants navigate a virtual plank, while simultaneously collecting task‐based fMRI from individuals with idiopathic PD with confirmed freezing of gait. Results First, we established that the threatening condition provoked more freezing when compared to the non‐threatening condition. By using a dynamic connectivity analysis, we identified patterns of increased “cross‐talk” within and between motor, limbic, and cognitive networks in the threatening conditions. We established that the threatening condition was associated with heightened network integration. We confirmed the sympathetic nature of this phenomenon by demonstrating an increase in pupil dilation during the anxiety‐inducing condition of the virtual reality gait paradigm in a secondary experiment. Conclusions In conclusion, our findings represent a neurobiological mechanistic pathway through which heightened sympathetic arousal related to anxiety could foster increased “cross‐talk” between distributed cortical networks that ultimately manifest as paroxysmal episodes of freezing of gait. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
科研通智能强力驱动
Strongly Powered by AbleSci AI