已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Monitoring crop phenology with street-level imagery using computer vision

物候学 专题地图 作物 生长季节 环境科学 农业工程 农学 地理 地图学 林业 工程类 生物
作者
Raphaël d’Andrimont,Momchil Yordanov,Laura Martinez-Sanchez,Marijn van der Velde
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:196: 106866-106866 被引量:29
标识
DOI:10.1016/j.compag.2022.106866
摘要

Street-level imagery holds a significant potential to scale-up in-situ data collection. This is enabled by combining the use of cheap high-quality cameras with recent advances in deep learning compute solutions to derive relevant thematic information. We present a framework to collect and extract crop type and phenological information from street level imagery using computer vision. Monitoring crop phenology is critical to assess gross primary productivity and crop yield. During the 2018 growing season, high-definition pictures were captured with side-looking action cameras in the Flevoland province of the Netherlands. Each month from March to October, a fixed 200-km route was surveyed collecting one picture per second resulting in a total of 400,000 geo-tagged pictures. At 220 specific parcel locations, detailed on the spot crop phenology observations were recorded for 17 crop types (including bare soil, green manure, and tulips): bare soil, carrots, green manure, grassland, grass seeds, maize, onion, potato, summer barley, sugar beet, spring cereals, spring wheat, tulips, vegetables, winter barley, winter cereals and winter wheat. Furthermore, the time span included specific pre-emergence parcel stages, such as differently cultivated bare soil for spring and summer crops as well as post-harvest cultivation practices, e.g. green manuring and catch crops. Classification was done using TensorFlow with a well-known image recognition model, based on transfer learning with convolutional neural network (MobileNet). A hypertuning methodology was developed to obtain the best performing model among 160 models. This best model was applied on an independent inference set discriminating crop type with a Macro F1 score of 88.1% and main phenological stage at 86.9% at the parcel level. Potential and caveats of the approach along with practical considerations for implementation and improvement are discussed. The proposed framework speeds up high quality in-situ data collection and suggests avenues for massive data collection via automated classification using computer vision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助hhh采纳,获得10
刚刚
心动nofear完成签到 ,获得积分10
5秒前
HandsomeShaw完成签到,获得积分10
5秒前
鼠小姐应助唐皮皮采纳,获得10
5秒前
醉熏的灵完成签到 ,获得积分10
8秒前
梵高完成签到,获得积分10
9秒前
非我完成签到 ,获得积分10
9秒前
11秒前
思辰。完成签到,获得积分10
12秒前
所所应助落后猕猴桃采纳,获得10
14秒前
雪满头发布了新的文献求助10
16秒前
君知完成签到,获得积分10
16秒前
zzzllove完成签到 ,获得积分10
17秒前
aldd关注了科研通微信公众号
20秒前
英勇星月完成签到 ,获得积分10
20秒前
22秒前
懵懂的子骞完成签到 ,获得积分10
23秒前
雪满头完成签到,获得积分0
25秒前
科研通AI2S应助Hhh采纳,获得10
25秒前
科研通AI5应助傲娇泥猴桃采纳,获得10
32秒前
firesquall完成签到,获得积分10
36秒前
一丢丢完成签到 ,获得积分10
37秒前
38秒前
上官若男应助盈月采纳,获得10
40秒前
42秒前
Coffee完成签到 ,获得积分10
42秒前
42秒前
绝尘发布了新的文献求助10
46秒前
大模型应助一一采纳,获得10
48秒前
xiaokang123完成签到,获得积分10
49秒前
51秒前
所所应助wzh采纳,获得10
51秒前
单纯麦片完成签到,获得积分10
52秒前
落后猕猴桃完成签到,获得积分10
52秒前
司徒寒烟发布了新的文献求助10
55秒前
共享精神应助阿瓜采纳,获得10
55秒前
飞快的孱完成签到,获得积分10
55秒前
LIUFEIYE8887完成签到 ,获得积分10
56秒前
传奇3应助绝尘采纳,获得10
58秒前
eureka发布了新的文献求助10
58秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800847
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329133
捐赠科研通 3062794
什么是DOI,文献DOI怎么找? 1681200
邀请新用户注册赠送积分活动 807440
科研通“疑难数据库(出版商)”最低求助积分说明 763702