Deep learning–based atherosclerotic coronary plaque segmentation on coronary CT angiography

医学 冠状动脉疾病 神经组阅片室 冠状动脉造影 分割 血管造影 血管内超声 放射科 核医学 内科学 心脏病学 人工智能 心肌梗塞 神经学 计算机科学 精神科
作者
Natasa Jávorszky,Bálint Homonnay,Gary Gerstenblith,David A. Bluemke,Péter Kiss,Mihály Török,David D. Celentano,Hong Lai,Shenghan Lai,Márton Kolossváry
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (10): 7217-7226 被引量:21
标识
DOI:10.1007/s00330-022-08801-8
摘要

ObjectivesVolumetric evaluation of coronary artery disease (CAD) allows better prediction of cardiac events. However, CAD segmentation is labor intensive. Our objective was to create an open-source deep learning (DL) model to segment coronary plaques on coronary CT angiography (CCTA).MethodsThree hundred eight individuals’ 894 CCTA scans with 3035 manually segmented plaques by an expert reader (considered as ground truth) were used to train (186/308, 60%), validate (tune, 61/308, 20%), and test (61/308, 20%) a 3D U-net model. We also evaluated the model on an external test set of 50 individuals with vulnerable plaques acquired at a different site. Furthermore, we applied transfer learning on 77 individuals’ data and re-evaluated the model’s performance using intra-class correlation coefficient (ICC).ResultsOn the test set, DL outperformed the currently used minimum cost approach method to quantify total: ICC: 0.88 [CI: 0.85–0.91] vs. 0.63 [CI: 0.42–0.76], noncalcified: 0.84 [CI: 0.80–0.88] vs. 0.45 [CI: 0.26–0.59], calcified: 0.99 [CI: 0.98–0.99] vs. 0.96 [CI: 0.94–0.97], and low attenuation noncalcified: 0.25 [CI: 0.13–0.37] vs. −0.01 [CI: −0.13 to 0.11] plaque volumes. On the external dataset, substantial improvement was observed in DL model performance after transfer learning, total: 0.62 [CI: 0.01–0.84] vs. 0.94 [CI: 0.87–0.97], noncalcified: 0.54 [CI: −0.04 to 0.80] vs. 0.93 [CI: 0.86–0.96], calcified: 0.91 [CI:0.85–0.95] vs. 0.95 [CI: 0.91–0.97], and low attenuation noncalcified 0.48 [CI: 0.18–0.69] vs. 0.86 [CI: 0.76–0.92].ConclusionsOur open-source DL algorithm achieved excellent agreement with expert CAD segmentations. However, transfer learning may be required to achieve accurate segmentations in the case of different plaque characteristics or machinery.Key Points• Deep learning 3D U-net model for coronary segmentation achieves comparable results with expert readers’ volumetric plaque quantification.• Transfer learning may be needed to achieve similar results for other scanner and plaque characteristics.• The developed deep learning algorithm is open-source and may be implemented in any CT analysis software.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛙蛙大王应助简单若云采纳,获得10
1秒前
鄂海菡完成签到,获得积分0
2秒前
2秒前
自信的寒天完成签到,获得积分10
3秒前
3秒前
chengzi完成签到,获得积分10
4秒前
shandianluwei发布了新的文献求助30
4秒前
执着的莆完成签到,获得积分10
6秒前
SL发布了新的文献求助10
8秒前
浮游应助李子园采纳,获得10
8秒前
emoji发布了新的文献求助10
8秒前
9秒前
LunminBao发布了新的文献求助10
10秒前
Jackson_Cheng完成签到,获得积分10
10秒前
英俊的铭应助YHDing采纳,获得10
11秒前
Dr_zsc完成签到,获得积分10
12秒前
小二郎应助外向电脑采纳,获得10
13秒前
13秒前
尼可刹米洛贝林完成签到,获得积分10
14秒前
科研小陈完成签到,获得积分10
14秒前
小样发布了新的文献求助100
14秒前
17秒前
17秒前
chengzi发布了新的文献求助10
18秒前
18秒前
机智无春发布了新的文献求助10
18秒前
天天快乐应助加油搬砖采纳,获得10
19秒前
希望天下0贩的0应助XU徐采纳,获得10
20秒前
科目三应助小脸红扑扑采纳,获得10
20秒前
21秒前
21秒前
22秒前
想有所成发布了新的文献求助10
22秒前
浮游应助墨颜采纳,获得10
23秒前
闪闪落雁完成签到,获得积分10
24秒前
Dada完成签到,获得积分10
24秒前
南风完成签到,获得积分10
25秒前
啊啊啊啊发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299983
求助须知:如何正确求助?哪些是违规求助? 4448023
关于积分的说明 13844467
捐赠科研通 4333625
什么是DOI,文献DOI怎么找? 2378986
邀请新用户注册赠送积分活动 1374155
关于科研通互助平台的介绍 1339786