亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Large-scale group decision-making with incomplete fuzzy preference relations: The perspective of ordinal consistency

一致性(知识库) 偏爱 顺序量表 群体决策 数学 序数数据 透视图(图形) 模糊逻辑 冗余(工程) 有序优化 序数回归 模糊集 比例(比率) 数据挖掘 人工智能 数理经济学 计算机科学 计量经济学 统计 心理学 社会心理学 物理 量子力学 操作系统
作者
Yuan Rong,Zhibin Wu,Jiancheng Tu
出处
期刊:Fuzzy Sets and Systems [Elsevier BV]
卷期号:454: 100-124 被引量:34
标识
DOI:10.1016/j.fss.2022.04.021
摘要

Incomplete preferences have become increasingly common in light of the redundancy of information and time-related pressures. Incomplete fuzzy preference relations (IFPRs) have thus attracted considerable research interest in recent years. A number of relevant studies have tended to rely on the cardinal consistency of a single IFPR or an aggregated group of preference relations. However, the preference-related information on which the final decision relies may be not reliable because ordinal inconsistency might persist following the application of cardinal consistency or an improvement in consensus. This paper proposes an optimization model that considers both cardinal consistency and ordinal consistency to estimate unknown preferences in IFPRs. The authors develop a model to optimize the consensus in problems involving large-scale group decision-making by using IFPRs. The proposed model can explicitly control ordinal consistency, minimize the extent of requisite modifications to the preferences, and guarantee that the cardinal and ordinal consistencies are well managed when a predefined level of consensus has been achieved to a greater extent than prevalent approaches to estimate unknown preferences. The individual and group FPRs revised by using the proposed model are more reliable as they contain no contradictory elements. Several classical numerical examples are used to verify the superiority of the proposed model to those currently used in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
56秒前
天天快乐应助轮回1奇点采纳,获得10
1分钟前
3分钟前
kbcbwb2002完成签到,获得积分10
3分钟前
3分钟前
拼搏的败完成签到 ,获得积分10
3分钟前
Jj7完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
科研通AI5应助卡卡啊采纳,获得10
4分钟前
酷波er应助我要发nature采纳,获得10
4分钟前
轮回1奇点发布了新的文献求助10
4分钟前
5分钟前
5分钟前
5分钟前
卡卡啊发布了新的文献求助10
5分钟前
杨怂怂完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
充电宝应助重要纸飞机采纳,获得30
6分钟前
6分钟前
七人七发布了新的文献求助10
6分钟前
科研通AI5应助卡卡啊采纳,获得10
6分钟前
乐乐应助科研通管家采纳,获得10
6分钟前
7分钟前
卡卡啊发布了新的文献求助10
7分钟前
7分钟前
yscjlxw547完成签到,获得积分10
7分钟前
8分钟前
8分钟前
8分钟前
8分钟前
852应助科研通管家采纳,获得10
8分钟前
我要发nature完成签到,获得积分10
8分钟前
11完成签到,获得积分10
9分钟前
科研通AI5应助11采纳,获得30
9分钟前
9分钟前
10分钟前
10分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833784
求助须知:如何正确求助?哪些是违规求助? 3376248
关于积分的说明 10492435
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704722
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771815