Driver operational level identification of driving risk and graded time-based alarm under near-crash conditions: A driving simulator study

碰撞 工程类 模拟 毒物控制 驾驶模拟器 车头时距 警报 撞车 汽车工程 计算机科学 计算机安全 医学 环境卫生 航空航天工程 程序设计语言
作者
LI Xian-yu,Zhongyin Guo,Yi Li
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:166: 106544-106544 被引量:8
标识
DOI:10.1016/j.aap.2021.106544
摘要

Rear-end collision and side collision are two types of accidents with the highest accident rate in the world. Numerous studies have focused on rear-end accident research, but only a few constructive countermeasures are put forward. Driving risk evolution at the driver operational level before an accident is critical to collision avoidance. This paper puts forward a driver operational level identification of driving risk and graded alarm under near-crash conditions. Firstly, driving simulation is utilized to acquire the operation data of SV (subjective vehicle) under the condition of emergent deceleration of LV (leading vehicle). The kinematic model is built to characterize the law of the risk discrimination indices of SV including THW (time headway), SHW (space headway) and TTCi (the reciprocal of time to collision). The predicted results are consistent with the naturalistic driving data. Secondly, the three-dimensional distribution 'speed-spacing-TTCi' is applied to classify the risky driving state of SV. The precarious distribution is concentrated at the area where relative velocity increased to 23-40 km/h and spacing decreased to 18-30 m. Finally, based on the reaction time and braking distance reduction, the optimal external intervention is determined to be the acousto-optic way by driving simulation. For moderate drivers, a three-level alarm of 2.94 s, 1.94 s and 1.1 s is calibrated considering different driving styles and cumulative frequency curve of reaction time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二一而已完成签到,获得积分10
刚刚
ken完成签到,获得积分10
1秒前
BillowHu发布了新的文献求助10
2秒前
光亮友安发布了新的文献求助10
2秒前
漂亮寻云发布了新的文献求助10
4秒前
伯劳发布了新的文献求助10
5秒前
Akim应助轻松博超采纳,获得10
5秒前
5秒前
CodeCraft应助羽翼采纳,获得10
5秒前
6秒前
典雅的鸡完成签到,获得积分10
6秒前
BillowHu完成签到,获得积分10
7秒前
科目三应助ken采纳,获得10
7秒前
孟春纪事完成签到 ,获得积分10
8秒前
喜悦彩虹发布了新的文献求助10
8秒前
9秒前
asasd完成签到,获得积分10
9秒前
10秒前
刘辉森发布了新的文献求助10
10秒前
波西米亚发布了新的文献求助10
11秒前
贵金属LiLi完成签到 ,获得积分10
11秒前
科研通AI5应助Oreaee采纳,获得10
11秒前
qq完成签到,获得积分10
12秒前
认真的白开水完成签到,获得积分10
12秒前
13秒前
古丁完成签到,获得积分10
13秒前
落寞太阳发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
15秒前
Tina完成签到,获得积分10
15秒前
15秒前
英俊的铭应助AI采纳,获得10
17秒前
帕丁顿完成签到,获得积分10
17秒前
Owen应助777777777采纳,获得10
17秒前
NAUerlin完成签到,获得积分10
18秒前
Cc完成签到,获得积分10
18秒前
LX1005完成签到 ,获得积分10
18秒前
ayan发布了新的文献求助10
18秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835479
求助须知:如何正确求助?哪些是违规求助? 3377803
关于积分的说明 10500774
捐赠科研通 3097386
什么是DOI,文献DOI怎么找? 1705784
邀请新用户注册赠送积分活动 820705
科研通“疑难数据库(出版商)”最低求助积分说明 772219