A Deep Learning Approach to LncRNA Subcellular Localization Using Inexact q-mers

亚细胞定位 计算机科学 水准点(测量) 人工智能 深度学习 支持向量机 计算生物学 机器学习
作者
Weijun Yi,Donald A. Adjeroh
标识
DOI:10.1109/bibm52615.2021.9669409
摘要

Long non-coding Ribonucleic Acids (lncRNAs) can be localized to different cellular components, such as the nucleus, exosome, cytoplasm, ribosome, etc. Their biological functions can be influenced by the region of the cell where they are located. Many of these lncRNAs are associated with different challenging diseases. Thus, it is crucial to study their subcellular localization. However, compared to the massive number of lncRNAs, only relatively few have annotations in terms of their subcellular localization. Conventional computational methods use q-mer profiles from lncRNA sequences and train machine learning models, such as support vector machines and logistic regression with the profiles. These methods focus on the exact q-mer. Given possible sequence mutations and other uncertainties in genomic sequences and their role in biological function, a consideration of these changes might improve our ability to model lncRNAs and their localization. We hypothesize that considering these changes may improve our ability to predict subcellular localization of lncRNAs. To test this hypothesis, we propose a deep learning model with inexact q-mers for the localization of lncRNAs in the cell. The proposed method can obtain a high overall accuracy of 94.7%, an average of 91.3% on a benchmark dataset, using 8-mers with mismatches. In comparison, the exact 8-mer result was 89.8%. The proposed approach outperformed existing state-of-art lncRNA localization predictors on two different datasets. Our results, therefore, support the hypothesis that deep learning models using inexact q-mers can improve the performance of computational lncRNA localization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爵士黄瓜完成签到,获得积分10
2秒前
2秒前
red完成签到,获得积分10
3秒前
酷波er应助liuss采纳,获得10
4秒前
4秒前
朱向阳发布了新的文献求助20
4秒前
ding应助lili采纳,获得10
4秒前
领导范儿应助橘栀采纳,获得10
5秒前
luckyplus发布了新的文献求助10
5秒前
大个应助hygge采纳,获得10
6秒前
dy关注了科研通微信公众号
7秒前
xmr发布了新的文献求助20
7秒前
8秒前
toniki发布了新的文献求助10
8秒前
南极熊发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
10秒前
HeAuBook应助decademe采纳,获得20
11秒前
11秒前
huan完成签到,获得积分10
11秒前
12秒前
yy发布了新的文献求助10
12秒前
DSDG完成签到,获得积分10
12秒前
文静颜演关注了科研通微信公众号
12秒前
科研通AI5应助lk0312采纳,获得10
15秒前
15秒前
飞翔的霸天哥应助chengxue采纳,获得30
16秒前
ww发布了新的文献求助10
16秒前
runaway完成签到 ,获得积分10
17秒前
科研通AI5应助安静的幼旋采纳,获得10
17秒前
17秒前
17秒前
LYB吕完成签到,获得积分10
18秒前
彭于晏应助朱向阳采纳,获得10
20秒前
世界第一大庸医完成签到,获得积分10
20秒前
runaway关注了科研通微信公众号
21秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896894
求助须知:如何正确求助?哪些是违规求助? 4178316
关于积分的说明 12970741
捐赠科研通 3941736
什么是DOI,文献DOI怎么找? 2162347
邀请新用户注册赠送积分活动 1180909
关于科研通互助平台的介绍 1086440