Graph Neural Network for Ethereum Fraud Detection

计算机科学 数据库事务 计算机安全 图形 节点(物理) 数据挖掘
作者
Runnan Tan,Qingfeng Tan,Peng Zhang,Zhao Li
标识
DOI:10.1109/ickg52313.2021.00020
摘要

Currently, the blockchain technology has been widely applied to various industries, and has attracted wide attention. However, because of its unique anonymity, digital currency has become a haven for all kinds of cyber crimes. It has been reported that Ethereum frauds provide huge profits, and pose a serious threat to the financial security of the Ethereum network. To create a desired financial environment, an effective method is urgently needed to automatically detect and identify Ethereum frauds in the governance of the Ethereum system. In view of this, this paper proposes a method for detecting Ethereum frauds by mining Ethereum-based transaction records. Specifically, web crawlers are used to capture labeled fraudulent addresses, and then a transaction network is reconstructed based on the public transaction book. Then, an amount-based network embedding algorithm is proposed to extract node features for identifying fraudulent transactions. At last, the graph convolutional network model is used to classify addresses into legal addresses and fraudulent addresses. The experimental results show that the system for detecting fraudulent transactions can achieve the accuracy of 95%, which reflects the excellent performance of the system for detecting Ethereum fraudulent transactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
热心的巧克力完成签到,获得积分10
4秒前
dkswy完成签到,获得积分10
5秒前
5秒前
田様应助畅快的含双采纳,获得10
7秒前
7秒前
Crystal发布了新的文献求助10
8秒前
记得接电话完成签到,获得积分10
8秒前
Hello应助小羊佳佳采纳,获得10
9秒前
Yan应助solitude采纳,获得10
9秒前
小熊枕头发布了新的文献求助10
9秒前
9秒前
xip完成签到,获得积分10
10秒前
pwy完成签到,获得积分10
12秒前
13秒前
李爱国应助科研通管家采纳,获得50
14秒前
14秒前
14秒前
打打应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得20
15秒前
慕青应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
WHM完成签到,获得积分10
15秒前
优pp完成签到 ,获得积分10
17秒前
啊哭应助热心的巧克力采纳,获得10
17秒前
科研通AI2S应助xcc采纳,获得10
17秒前
18秒前
科研通AI5应助梁世秀采纳,获得10
18秒前
19秒前
大力沛萍发布了新的文献求助10
21秒前
上官若男应助高雪采纳,获得10
21秒前
Akim应助chen采纳,获得10
23秒前
pinecone发布了新的文献求助10
23秒前
solitude完成签到,获得积分10
25秒前
26秒前
27秒前
健康的妙菱完成签到,获得积分10
28秒前
29秒前
wanci应助pinecone采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4479616
求助须知:如何正确求助?哪些是违规求助? 3936982
关于积分的说明 12213490
捐赠科研通 3591701
什么是DOI,文献DOI怎么找? 1975162
邀请新用户注册赠送积分活动 1012407
科研通“疑难数据库(出版商)”最低求助积分说明 905660