Profiling the constituents of Dachuanxiong decoction by liquid chromatography with high‐resolution tandem mass spectrometry using target and nontarget data mining

汤剂 化学 串联质谱法 色谱法 化学成分 质谱法 碎片(计算) 高分辨率 传统医学 计算机科学 遥感 医学 操作系统 地质学
作者
Jie Liu,Mingxia Wang,Lianming Chen,Yue-Ting Li,Yijun Chen,Ziyi Wei,Zhixin Jia,Xu Wenjuan,Hongbin Xiao
出处
期刊:Journal of Separation Science [Wiley]
卷期号:42 (13): 2202-2213 被引量:8
标识
DOI:10.1002/jssc.201900064
摘要

Comprehensive characterization of the large number of compounds existing in traditional Chinese medicines is still a great challenge. In this study, a strategy of precursor ion selected acquisition coupled with target and nontarget data mining was established to systematically characterize the chemical constituents of traditional Chinese medicines. This strategy consisted of four steps: (1) precursor ion selected acquisition was developed to trigger additional tandem mass spectrometry fragmentation reactions, especially for trace constituents; (2) in-house database of compounds was established and diagnostic characteristics were summarized; (3) compounds were identified by target and nontarget data mining; and (4) compound structures were elucidated based on accurate mass matching and comparison of fragment ions, and isomers were discriminated by the intensity of fragment ions, fragmentation pattern analysis, and calculated log P values. This strategy was successfully applied to comprehensively identify the constituents in Dachuanxiong decoction. Finally, a total of 218 compounds assigned to six categories were characterized, and 107 compounds were characterized by nontarget analysis for the first time. In addition, three new diagnostic characteristics of esters of citric acids were elucidated. This research enriched the material basis of Dachuanxiong decoction and provided a new strategy for identifying the chemical constituents of other traditional Chinese medicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助Feifei133采纳,获得10
1秒前
Guoqiang发布了新的文献求助10
1秒前
jenningseastera应助甪用采纳,获得30
2秒前
满意的伊发布了新的文献求助10
3秒前
今后应助出其东门采纳,获得10
3秒前
xixihaha发布了新的文献求助10
6秒前
李健应助Aaron采纳,获得10
7秒前
Qionglin发布了新的文献求助200
7秒前
13秒前
14秒前
14秒前
orixero应助满意的伊采纳,获得10
15秒前
英姑应助橙子abcy采纳,获得10
17秒前
晴枫3648发布了新的文献求助10
18秒前
18秒前
机灵雨完成签到 ,获得积分10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
18秒前
出其东门发布了新的文献求助10
18秒前
ao发布了新的文献求助10
18秒前
19秒前
偲偲偲偲偲完成签到,获得积分10
20秒前
20秒前
20秒前
科研通AI2S应助专注的月亮采纳,获得10
21秒前
shuicaoxi发布了新的文献求助10
21秒前
JIA发布了新的文献求助10
23秒前
24秒前
Aaron发布了新的文献求助10
26秒前
26秒前
Catherine完成签到,获得积分10
26秒前
奋斗的蜗牛应助不吃西瓜采纳,获得10
26秒前
出其东门完成签到,获得积分10
27秒前
28秒前
28秒前
anyuanli发布了新的文献求助30
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782130
求助须知:如何正确求助?哪些是违规求助? 3327565
关于积分的说明 10232237
捐赠科研通 3042513
什么是DOI,文献DOI怎么找? 1670024
邀请新用户注册赠送积分活动 799592
科研通“疑难数据库(出版商)”最低求助积分说明 758825