Research on the quantitative relationship between topographic features and river network structures

水文学(农业) 流域 线性回归 回归分析 地质学 环境科学 统计 地图学 地理 数学 岩土工程
作者
Fawen Li,He Wang,Huifeng Liu
出处
期刊:Physical Geography [Taylor & Francis]
卷期号:: 1-19 被引量:1
标识
DOI:10.1080/02723646.2022.2163541
摘要

ABSTRACTABSTRACTHydrologists pursue the long-term goals of studying the relationship between hydrological processes and geomorphological processes, establishing quantitative relationships between these processes and finding ways to directly derive hydrological processes from topographic parameters to reduce the dependence on hydrological data. In this study, the river network of the Haihe River Basin was extracted based on DEM, and 18 representative small basins were selected as samples. Four river network parameters (the river network density, average branch ratio, average length ratio and fractal dimension) and four topographic parameters (the slope, topographic relief, surface roughness and roundness rate) were calculated for 18 small basins. The river network features and topographic features of the basin were analysed. Correlation analysis, one-dimensional linear regression, partial correlation analysis and multiple linear regression (stepwise regression) methods were used to analyse the quantitative relationship between topographic parameters and river network parameters. The analysis results were tested by a significance test, the final goodness of fit of the regression model was good, and the results were reliable. The correlations are spatially heterogeneous and may show variable results in different regions. This study guides river network planning and management, and managers should pay attention to the correlation between river networks and topography in the long term.KEYWORDS: Haihe River Basinriver network parameterstopographic parametersquantitative relationshipregression model AcknowledgementsThe authors would like to acknowledge the financial support for this work provided by the National Natural Science Foundation of China (Grant no. 52179020).Disclosure statementNo potential conflict of interest was reported by the author(s).Authors’ contributionsAll the authors contributed to the study conception and design. Material preparation, data collection and analyses were performed by Fawen Li, He Wang and Huifeng Liu. The first draft of the manuscript was written by Fawen Li, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.Availability of data and materialThe datasets used or analysed during the current study are available from the corresponding author upon reasonable request.Additional informationFundingThe work was supported by the National Natural Science Foundation of China [52179020]
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助try采纳,获得50
刚刚
Ava应助LYHUIII采纳,获得10
1秒前
无花果应助一见憘采纳,获得10
1秒前
受伤元灵关注了科研通微信公众号
3秒前
Yuna完成签到,获得积分10
4秒前
4秒前
5秒前
7秒前
9秒前
10秒前
伊斯塔发布了新的文献求助10
12秒前
ENIGMA__K发布了新的文献求助30
13秒前
受伤元灵发布了新的文献求助10
13秒前
王111完成签到,获得积分10
16秒前
Orange应助lsx采纳,获得10
17秒前
cdercder应助甜美宛儿采纳,获得10
18秒前
18秒前
赫赫完成签到,获得积分10
20秒前
许甜甜鸭应助cis2014采纳,获得10
21秒前
研友_LjDyNZ发布了新的文献求助20
22秒前
22秒前
研友_VZG7GZ应助伊斯塔采纳,获得10
22秒前
22秒前
小白发布了新的文献求助10
27秒前
tianqing发布了新的文献求助10
27秒前
英姑应助Iso采纳,获得10
28秒前
ant完成签到,获得积分10
29秒前
FashionBoy应助悠然采纳,获得10
29秒前
新新新新新发顶刊完成签到 ,获得积分10
29秒前
29秒前
Wangz发布了新的文献求助10
30秒前
伊斯塔完成签到,获得积分10
31秒前
科研狗完成签到 ,获得积分10
32秒前
虞丹萱发布了新的文献求助10
33秒前
甜美宛儿完成签到,获得积分10
33秒前
34秒前
情怀应助科研通管家采纳,获得10
34秒前
许甜甜鸭应助科研通管家采纳,获得20
34秒前
科目三应助科研通管家采纳,获得10
34秒前
mmyhn应助科研通管家采纳,获得50
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Maturation of NMDA receptor-mediated spontaneous postsynaptic currents in the rat locus coeruleus neurons 200
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834973
求助须知:如何正确求助?哪些是违规求助? 3377482
关于积分的说明 10498771
捐赠科研通 3096967
什么是DOI,文献DOI怎么找? 1705366
邀请新用户注册赠送积分活动 820529
科研通“疑难数据库(出版商)”最低求助积分说明 772123