静电纺丝
伤口愈合
材料科学
体内
生物医学工程
极限抗拉强度
脚手架
抗菌活性
聚合物
复合材料
化学工程
细菌
外科
医学
生物技术
生物
工程类
遗传学
作者
M. Mehedi Hasan,Md. Abdus Shahid
标识
DOI:10.1080/09205063.2022.2163454
摘要
Nanofibrous scaffolds with core-shell structures can deliver bioactive agents, augment mechanical properties, provide a high surface area to volume ratio, and most importantly mimic the structure of extracellular matrix (ECM) which enables to maintain of a moist environment, elimination of excess exudates and provide antibacterial properties to impede infections. This study has developed PVA, licorice, and collagen (PLC) based hybrid bio-nano scaffold by co-axial electrospinning technique for enhancing wound closure. The core layer was made by PVA & licorice extract and shell layer was created by collagen & licorice extract solution. The morphology, moisture management properties, presence of constituent polymer, thermal behavior, and mechanical properties of the developed samples were characterized by FE-SEM, moisture management tester (MMT), FT/IR, TGA, tensile testing machine. Furthermore, in vitro antibacterial assay was conducted by Kirby-Bauer disk diffusion method for investigating antibacterial properties and an in-vivo wound healing assessment was employed by observing the wound healing. Then FE-SEM images showed the lowest and highest average diameters 119 nm and 154 nm respectively, FT/IR spectra ensured the presence of all materials in the sample. Furthermore, the moisture management test result demonstrated slow absorbing and slow drying scaffolds which emphasized the eligibility of the sample to be an ideal candidate for wound healing. Moreover, the minimum and maximum zones of inhibition (ZOI) were found 7 mm and 8 mm against the bacteria Staphylococcus aureus. Finally, an in vivo wound healing assessment revealed a better healing performance of the developed samples after 10 days.
科研通智能强力驱动
Strongly Powered by AbleSci AI