Can habitual tea drinking be an effective approach against age-related neurodegenerative cognitive disorders: A systematic review and meta-analysis of epidemiological evidence

荟萃分析 医学 流行病学 认知 随机对照试验 系统回顾 队列研究 梅德林 子群分析 临床心理学 精神科 内科学 政治学 法学
作者
Wei Quan,Yong Lin,Huiyu Zou,Maiquan Li,Jie Luo,Zhiyong He,Jie Chen,Zhonghua Liu
出处
期刊:Critical Reviews in Food Science and Nutrition [Taylor & Francis]
卷期号:64 (17): 5835-5851 被引量:5
标识
DOI:10.1080/10408398.2022.2158780
摘要

Our present knowledge about the efficacy of tea consumption in improving age-related cognitive disorders is incomplete since previous epidemiological studies provide inconsistent evidence. This unified systematic review and meta-analysis based on updated epidemiological cohort studies and randomized controlled trials (RCTs) evidence aimed to overcome the limitations of previous reviews by examining the efficacy of distinct types of tea consumption. PubMed, Embase, and MEDLINE were searched up to May 20, 2022, and 23 cohorts and 12 cross-sectional studies were included. Random-effects meta-analyses were conducted to obtain pooled RRs or mean differences with 95% CIs. The pooled RRs of the highest versus lowest tea consumption categories were 0.81 (95% CIs: 0.75-0.88) and 0.69 (95% CIs: 0.61-0.77), respectively. The pooled mean difference of four included RCTs revealed a beneficial effect of tea on cognitive dysfunction (MMSE ES: 1.03; 95% CI, 0.14-1.92). Subgroup analyses further demonstrated that green and black tea intake was associated with a lower risk of cognitive disorders in eastern countries, especially in women. The evidence quality was generally low to moderate. The present review provides insight into whether habitual tea consumption can be an effective approach against age-related neurodegenerative cognitive disorders and summarizes potential mechanisms based on currently published literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭娅楠完成签到 ,获得积分10
刚刚
刚刚
FashionBoy应助CY采纳,获得10
2秒前
mignan发布了新的文献求助10
2秒前
李熙祥留下了新的社区评论
3秒前
萧楚河发布了新的文献求助10
3秒前
Thea应助挚缘采纳,获得10
4秒前
4秒前
5秒前
5秒前
zt永不重名完成签到,获得积分10
6秒前
领导范儿应助Chi_bio采纳,获得10
6秒前
6秒前
7秒前
blue2021发布了新的文献求助20
8秒前
9秒前
大佬虎发布了新的文献求助10
9秒前
ZHU完成签到,获得积分10
10秒前
10秒前
研友_VZG7GZ应助大佬虎采纳,获得10
14秒前
mignan完成签到,获得积分20
15秒前
15秒前
wwz发布了新的文献求助10
16秒前
C&D发布了新的文献求助10
16秒前
刘瘦瘦完成签到 ,获得积分10
16秒前
光亮千易完成签到,获得积分10
16秒前
16秒前
顾矜应助blue2021采纳,获得20
16秒前
不想干活应助amengptsd采纳,获得20
17秒前
18秒前
自信南霜发布了新的文献求助30
19秒前
桐桐应助体贴花卷采纳,获得10
20秒前
Zyyyh发布了新的文献求助10
21秒前
22秒前
22秒前
Thea应助受伤的如雪采纳,获得10
23秒前
lyc8211关注了科研通微信公众号
25秒前
26秒前
顾矜应助sun采纳,获得10
26秒前
kakakaku发布了新的文献求助10
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4160462
求助须知:如何正确求助?哪些是违规求助? 3696216
关于积分的说明 11672732
捐赠科研通 3387918
什么是DOI,文献DOI怎么找? 1857717
邀请新用户注册赠送积分活动 918661
科研通“疑难数据库(出版商)”最低求助积分说明 831634