Predicting ozone formation in petrochemical industrialized Lanzhou city by interpretable ensemble machine learning

臭氧 气象学 环境科学 污染 空气质量指数 空气污染 灵敏度(控制系统) 地面臭氧 大气科学 氮氧化物 大气化学 气候学 化学 地理 工程类 燃烧 地质学 生物 有机化学 电子工程 生态学
作者
Li Wang,Yuan Zhao,Jinsen Shi,Jianmin Ma,Xiaoyue Liu,Dongliang Han,Hong Gao,Tao Huang
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:318: 120798-120798 被引量:22
标识
DOI:10.1016/j.envpol.2022.120798
摘要

Ground-level ozone (O3) formation depends on meteorology, precursor emissions, and atmospheric chemistry. Understanding the key drivers behind the O3 formation and developing an accurate and efficient method for timely assessing the O3-VOCs-NOx relationships applicable in different O3 pollution events are essential. Here, we developed a novel machine learning ensemble model coupled with a Shapley additive explanation algorithm to predict the O3 formation regime and derive O3 formation sensitivity curves. The algorithm was tested for O3 events during the COVID-19 lockdown, a sandstorm event, and a heavy O3 pollution episode (maximum hourly O3 concentration >200 μg/m3) from 2019 to 2021. We show that increasing O3 concentrations during the COVID-19 lockdown and the heavy O3 pollution event were mainly caused by the photochemistry subject to local air quality and meteorological conditions. Influenced by the sandstorm weather, low O3 levels were mainly attributable to weak sunlight and low precursor levels. O3 formation sensitivity curves demonstrate that O3 formation in the study area was in a VOCs-sensitive regime. The VOCs-specific O3 sensitivity curves can also help make hybrid and timely strategies for O3 abatement. The results demonstrate that machine learning driven by observational data has the potential to be a very useful tool in predicting and interpreting O3 formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangqq完成签到,获得积分10
刚刚
1秒前
香蕉觅云应助好柿豆花生采纳,获得10
1秒前
1秒前
天真初蝶完成签到,获得积分10
1秒前
2秒前
陈陈完成签到,获得积分10
2秒前
桐桐应助饱满不愁采纳,获得10
2秒前
2秒前
Zephyra发布了新的文献求助10
3秒前
难过的微生物完成签到,获得积分10
3秒前
3秒前
hao关闭了hao文献求助
4秒前
5秒前
Lucas应助义气的德天采纳,获得10
5秒前
5秒前
小懒发布了新的文献求助10
5秒前
Gigi发布了新的文献求助30
5秒前
CodeCraft应助hjg采纳,获得10
5秒前
6秒前
123456发布了新的文献求助10
6秒前
6秒前
lizhiqian2024发布了新的文献求助10
6秒前
chenchen完成签到,获得积分10
7秒前
7秒前
pp发布了新的文献求助10
7秒前
橙子发布了新的文献求助10
8秒前
赘婿应助suxin采纳,获得10
8秒前
8秒前
李健应助隐形鸣凤采纳,获得10
9秒前
勤劳怜寒发布了新的文献求助10
9秒前
tangyong完成签到,获得积分10
9秒前
竹筏过海应助微风采纳,获得30
9秒前
10秒前
FUNG发布了新的文献求助10
10秒前
10秒前
Wang完成签到 ,获得积分20
10秒前
小蘑菇应助顺利凌寒采纳,获得10
10秒前
10秒前
张XX完成签到,获得积分10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786287
求助须知:如何正确求助?哪些是违规求助? 3332088
关于积分的说明 10253581
捐赠科研通 3047409
什么是DOI,文献DOI怎么找? 1672530
邀请新用户注册赠送积分活动 801330
科研通“疑难数据库(出版商)”最低求助积分说明 760143