A Drug Combination Prediction Framework Based on Graph Convolutional Network and Heterogeneous Information

计算机科学 药品 可扩展性 药物重新定位 图形 人工智能 代表(政治) 机器学习 理论计算机科学 医学 药理学 政治学 数据库 政治 法学
作者
Hegang Chen,Yuyin Lu,Yuedong Yang,Yanghui Rao
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 1917-1925 被引量:9
标识
DOI:10.1109/tcbb.2022.3224734
摘要

Combination therapy, which can improve therapeutic efficacy and reduce side effects, plays an important role in the treatment of complex diseases. Yet, a large number of possible combinations among candidate compounds limits our ability to identify effective combinations. Though many studies have focused on predicting potential drug combinations, the existing methods are not entirely satisfactory in terms of performance and scalability. In this study, we propose a new computational pipeline, called DCMGCN, which integrates diverse drug-related information, to predict novel drug combinations. Specifically, DCMGCN first learns low-dimensional representations of drugs from the drug attributes and similarity networks. Then, by quantifying the degree of the nodes in the known drug-drug network and the similarity between connected nodes, we found the drug-drug network has heterophily and sparseness, which may limit the effectiveness of the graph convolutional network (GCN). Therefore, we introduce two designs to modify GCN. Finally, the drug representations are optimized using modified GCN (MGCN) and used to predict drug combinations. The tests on multiple drug combination datasets show that DCMGCN achieved substantial improvements over state-of-the-art methods. Importantly, our model may embed the mechanism of ground-truth drug pairs into the low-dimensional representation of each drug, which may help to further clarify the understanding of mechanisms of drug action.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知墨发布了新的文献求助30
刚刚
巨大的小侠完成签到,获得积分10
刚刚
TheQ完成签到,获得积分10
1秒前
SciGPT应助苦也采纳,获得10
1秒前
fagfagsf发布了新的文献求助10
1秒前
薛诗棋发布了新的文献求助10
1秒前
思源应助砰砰采纳,获得10
1秒前
2秒前
豆豆完成签到,获得积分10
2秒前
洛敏夕5743完成签到,获得积分10
2秒前
agyh应助vvvvyl采纳,获得10
2秒前
爱上彩色完成签到,获得积分10
3秒前
CodeCraft应助Crazy_Runner采纳,获得10
3秒前
灵明完成签到,获得积分10
4秒前
4秒前
伊一呼啦伊一呼啦完成签到,获得积分10
4秒前
4秒前
HEISITATION完成签到,获得积分10
5秒前
5秒前
ahaaa完成签到,获得积分10
5秒前
CHEN完成签到,获得积分10
5秒前
wannn完成签到 ,获得积分10
5秒前
今后应助Fish Yeung采纳,获得10
5秒前
不成文发布了新的文献求助10
6秒前
WD完成签到,获得积分10
6秒前
7秒前
笨笨千青完成签到,获得积分10
8秒前
白白发布了新的文献求助10
8秒前
Rae完成签到,获得积分10
9秒前
9秒前
lyx发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
cindy完成签到,获得积分10
12秒前
12秒前
彭于晏应助Sun采纳,获得30
12秒前
12秒前
13秒前
研友_LNoy5n发布了新的文献求助10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838196
求助须知:如何正确求助?哪些是违规求助? 3380471
关于积分的说明 10514526
捐赠科研通 3100044
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821625
科研通“疑难数据库(出版商)”最低求助积分说明 772816