Dissecting the compensation conundrum: a machine learning-based prognostication of key determinants in a complex labor market

补偿(心理学) 独创性 稳健性(进化) 营销 产业组织 业务 人工智能 经济 计算机科学 知识管理 心理学 社会心理学 创造力 生物化学 化学 基因
作者
Rachana Jaiswal,Shashank Gupta,Aviral Kumar Tiwari
出处
期刊:Management Decision [Emerald Publishing Limited]
卷期号:61 (8): 2322-2353 被引量:5
标识
DOI:10.1108/md-07-2022-0976
摘要

Purpose Amidst the turbulent tides of geopolitical uncertainty and pandemic-induced economic disruptions, the information technology industry grapples with alarming attrition and aggravating talent gaps, spurring a surge in demand for specialized digital proficiencies. Leveraging this imperative, firms seek to attract and retain top-tier talent through generous compensation packages. This study introduces a holistic, integrated theoretical framework integrating machine learning models to develop a compensation model, interrogating the multifaceted factors that shape pay determination. Design/methodology/approach Drawing upon a stratified sample of 2488 observations, this study determines whether compensation can be accurately predicted via constructs derived from the integrated theoretical framework, employing various cutting-edge machine learning models. This study culminates in discovering a random forest model, exhibiting 99.6% accuracy and 0.08° mean absolute error, following a series of comprehensive robustness checks. Findings The empirical findings of this study have revealed critical determinants of compensation, including but not limited to experience level, educational background, and specialized skill-set. The research also elucidates that gender does not play a role in pay disparity, while company size and type hold no consequential sway over individual compensation determination. Practical implications The research underscores the importance of equitable compensation to foster technological innovation and encourage the retention of top talent, emphasizing the significance of human capital. Furthermore, the model presented in this study empowers individuals to negotiate their compensation more effectively and supports enterprises in crafting targeted compensation strategies, thereby facilitating sustainable economic growth and helping to attain various Sustainable Development Goals. Originality/value The cardinal contribution of this research lies in the inception of an inclusive theoretical framework that persuasively explicates the intricacies of a machine learning-driven remuneration model, ennobled by the synthesis of diverse management theories to capture the complexity of compensation determination. However, the generalizability of the findings to other sectors is constrained as this study is exclusively limited to the IT sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
若有光发布了新的文献求助10
3秒前
shen发布了新的文献求助10
6秒前
melody发布了新的文献求助10
6秒前
一一完成签到,获得积分20
10秒前
畅快的眼神完成签到 ,获得积分10
12秒前
所所应助ClancyJacky采纳,获得10
14秒前
桐桐应助huangjing采纳,获得10
15秒前
科研通AI5应助wendinfgmei采纳,获得10
21秒前
懒羊羊完成签到 ,获得积分10
25秒前
万能图书馆应助方1111采纳,获得10
26秒前
胡砚之完成签到,获得积分10
28秒前
乐正广山完成签到,获得积分20
28秒前
30秒前
ll完成签到,获得积分10
30秒前
31秒前
31秒前
细心雨兰完成签到 ,获得积分20
32秒前
乐正广山发布了新的文献求助10
34秒前
34秒前
而已发布了新的文献求助10
35秒前
希望天下0贩的0应助Gary采纳,获得10
36秒前
36秒前
38秒前
39秒前
顾矜应助关天木采纳,获得10
41秒前
丘比特应助乐正广山采纳,获得10
41秒前
木木杨发布了新的文献求助10
43秒前
zln完成签到,获得积分20
43秒前
shen完成签到,获得积分10
43秒前
芋圆完成签到 ,获得积分10
45秒前
田boy完成签到,获得积分10
46秒前
48秒前
Alex完成签到,获得积分10
49秒前
华仔应助科研通管家采纳,获得10
52秒前
科目三应助科研通管家采纳,获得10
52秒前
Lucas应助科研通管家采纳,获得10
52秒前
小二郎应助科研通管家采纳,获得10
52秒前
科研通AI5应助科研通管家采纳,获得10
52秒前
小李老博应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211853
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133