In‐Sensor Computing with Visual‐Tactile Perception Enabled by Mechano‐Optical Artificial Synapse

材料科学 触觉知觉 触觉传感器 突触 感知 纳米技术 人工智能 光电子学 神经科学 计算机科学 机器人 心理学
作者
Jiaxing Guo,Feng Guo,Huijun Zhao,Hang Yang,Xiaona Du,Fei Fan,Weiwei Liu,Yang Zhang,Dong Tu,Jianhua Hao
出处
期刊:Advanced Materials [Wiley]
卷期号:37 (14): e2419405-e2419405 被引量:26
标识
DOI:10.1002/adma.202419405
摘要

Abstract In‐sensor computing paradigm holds the promise of realizing rapid and low‐power signal processing. Constructing crossmodal in‐sensor computing systems to emulate human sensory and recognition capabilities has been a persistent pursuit for developing humanoid robotics. Here, an artificial mechano‐optical synapse is reported to implement in‐sensor dynamic computing with visual‐tactile perception. By employing mechanoluminescence (ML) material, direct conversion of the mechanical signals into light emission is achieved and the light is transported to an adjacent photostimulated luminescence (PSL) layer without pre‐ and post‐irradiation. The PSL layer acts as a photon reservoir as well as a processing unit for achieving in‐memory computing. The approach based on ML coupled with PSL material is different from traditional circuit–constrained methods, enabling remote operation and easy accessibility. Individual and synergistic plasticity are elaborately investigated under force and light pulses, including paired‐pulse facilitation, learning behavior, and short‐term and long‐term memory. A multisensory neural network is built for processing the obtained handwritten patterns with a tablet consisting of the device, achieving a recognition accuracy of up to 92.5%. Moreover, material identification has been explored based on visual‐tactile sensing, with an accuracy rate of 98.6%. This work provides a promising strategy to construct in‐sensor computing systems with crossmodal integration and recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助xxd采纳,获得10
1秒前
1秒前
1秒前
珞珈完成签到 ,获得积分20
2秒前
2秒前
2秒前
今后应助心想事成采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
赛德克完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
上官若男应助王达庆采纳,获得10
4秒前
LX发布了新的文献求助10
4秒前
BowieHuang应助青木瓜子采纳,获得10
6秒前
7秒前
7秒前
zyy发布了新的文献求助10
8秒前
8秒前
longer发布了新的文献求助10
8秒前
邓佳鑫Alan举报MrFamous求助涉嫌违规
9秒前
10秒前
10秒前
10秒前
万能图书馆应助优美紫槐采纳,获得10
11秒前
12秒前
13秒前
景辞发布了新的文献求助10
13秒前
谦让安双发布了新的文献求助10
13秒前
共享精神应助独云采纳,获得10
13秒前
晕晕完成签到 ,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
春深半夏发布了新的文献求助10
16秒前
16秒前
余一台发布了新的文献求助10
16秒前
16秒前
科目三应助迷人书蝶采纳,获得10
17秒前
xxd发布了新的文献求助10
17秒前
张静怡发布了新的文献求助10
17秒前
缓慢醉卉完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721428
求助须知:如何正确求助?哪些是违规求助? 5265735
关于积分的说明 15294026
捐赠科研通 4870760
什么是DOI,文献DOI怎么找? 2615607
邀请新用户注册赠送积分活动 1565381
关于科研通互助平台的介绍 1522454