CT Perfusion Map Generation from Multi-phase CT Angiography Using Generative adversarial model for Acute Ischemic Stroke

医学 灌注 冲程(发动机) 血管造影 放射科 灌注扫描 缺血性中风 生成语法 急性中风 缺血 心脏病学 人工智能 内科学 计算机科学 机械工程 组织纤溶酶原激活剂 工程类
作者
Yuxin Cai,Jianhai Zhang,G Arvind,Bo Hu,M Bijoy,Shengcai Chen,Wu Qiu
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:: ajnr.A8857-ajnr.A8857
标识
DOI:10.3174/ajnr.a8857
摘要

Multiphase CT Angiography (mCTA) has shown potential as a diagnostic tool for acute ischemic stroke (AIS), as it captures dynamic changes in cerebral vasculature. However, mCTA has limitations in assessing brain tissue perfusion, which reduces its clinical interpretability. To address this limitation, we aim to develop a generative adversarial network (GAN) that generates CT Perfusion (CTP)-like maps from mCTA. This approach aims to improve the interpretability of mCTA. A total of 714 cases with NCCT, CTP, mCTA, and follow-up NCCT/MR were analyzed across internal and external datasets. A GAN was trained to generate multi-parametric CTP maps (Tmax, CBF, CBV). The model's performance was evaluated using SSIM, PSNR, and FID compared to actual CTP maps. Clinical utility was assessed by predicting infarct core and penumbra using threshold-based segmentation and evaluating metrics such as Dice coefficient, AUC of dichotomized infarct volume of < 70cc and mismatch ratio following DEFUSE 3 criteria, compared to the ground truth of actual CTP prediction. The GAN achieved SSIM 0.647-0.662, PSNR 20.6-20.9, and FID 16.6-17.0 on internal data, surpassing both CycleGAN [11] (SSIM: 0.608-0.642, PSNR: 18.2-19.2, FID: 27.6-32.5) and Pix2Pix [10] (SSIM: 0.630-0.645, PSNR: 19.5-19.7, FID: 19.4-20.8) across all metrics. Predicted penumbra and infarct core showed Dice coefficients of 0.672 and 0.468, with strong correlations (penumbra: 0.921, core: 0.902) and AUCs of 0.854 (95% CI: 0.819-0.888)(mismatch ratio) and 0.850(95% CI: 0.817-0.884) (dichotomized infarct core). External data validation yielded Dice coefficients of 0.481 (penumbra) and 0.301 (core) with AUCs of 0.720(95% CI: 0.589- 0.808) (mismatch ratio) and 0.703(95% CI: 0.528-0.794)(dichotomized infarct core). The GAN effectively generated CTP-like maps from mCTA, improving interpretability and demonstrating promising diagnostic performance, particularly for resource-limited settings. mCTA = Multiphase CT angiography, CTP = CT perfusion, CBF = Cerebral blood flow, CBV = Cerebral blood volume, GAN = Generative adversarial network, FID = Fréchet inception distance, AUC = Area under the receiver operating characteristic curve, AIS = acute ischemic stroke.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kushdw发布了新的文献求助10
刚刚
fdpb完成签到,获得积分10
1秒前
幽默科研人完成签到,获得积分20
4秒前
FashionBoy应助JIE采纳,获得10
7秒前
传奇3应助eritinn采纳,获得10
8秒前
追寻代真完成签到,获得积分10
9秒前
遮宁完成签到,获得积分10
14秒前
CodeCraft应助缓慢的微笑采纳,获得10
14秒前
yzxzdm完成签到 ,获得积分10
16秒前
李故完成签到,获得积分10
16秒前
超级玛丽完成签到 ,获得积分10
18秒前
万能图书馆应助韭菜盒子采纳,获得10
18秒前
爱静静应助秋浱采纳,获得10
19秒前
20秒前
Owen应助冷酷的天德采纳,获得10
23秒前
sciscisci完成签到,获得积分10
24秒前
木头完成签到,获得积分10
27秒前
孝铮完成签到 ,获得积分10
29秒前
普通用户30号完成签到 ,获得积分10
32秒前
33秒前
34秒前
fa完成签到,获得积分10
34秒前
研友_nqv2WZ完成签到,获得积分10
35秒前
36秒前
邓怡完成签到 ,获得积分10
36秒前
Pretext完成签到 ,获得积分10
36秒前
星星完成签到,获得积分10
37秒前
37秒前
39秒前
JIE发布了新的文献求助10
39秒前
Ava应助韭黄采纳,获得10
39秒前
underway发布了新的文献求助10
40秒前
xin_you完成签到,获得积分10
41秒前
有有完成签到 ,获得积分10
42秒前
42秒前
keplek完成签到 ,获得积分10
43秒前
斯文败类应助Xu采纳,获得10
44秒前
ttttt完成签到,获得积分10
46秒前
duotianzhiyi完成签到,获得积分10
46秒前
丿淘丶Tao丨完成签到,获得积分10
47秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965813
求助须知:如何正确求助?哪些是违规求助? 3511146
关于积分的说明 11156382
捐赠科研通 3245736
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268