Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems

基础(证据) 认知科学 工程伦理学 心理学 计算机科学 管理科学 数据科学 工程类 政治学 法学
作者
Bang Liu,Xinfeng Li,Jiayi Zhang,Jinlin Wang,Tanjin He,Sirui Hong,LIU HongZhang,Shaokun Zhang,Kaitao Song,Kunlun Zhu,Yuheng Cheng,Shouguo Wang,Xiaoqiang Wang,Yuyu Luo,Huanying Jin,Peiyan Zhang,Ollie Liu,Jiaqi Chen,Huan Zhang,Zhaoyang Yu
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2504.01990
摘要

The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence, paving the way for advanced intelligent agents capable of sophisticated reasoning, robust perception, and versatile action across diverse domains. As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges. This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture that integrates principles from cognitive science, neuroscience, and computational research. We structure our exploration into four interconnected parts. First, we delve into the modular foundation of intelligent agents, systematically mapping their cognitive, perceptual, and operational modules onto analogous human brain functionalities, and elucidating core components such as memory, world modeling, reward processing, and emotion-like systems. Second, we discuss self-enhancement and adaptive evolution mechanisms, exploring how agents autonomously refine their capabilities, adapt to dynamic environments, and achieve continual learning through automated optimization paradigms, including emerging AutoML and LLM-driven optimization strategies. Third, we examine collaborative and evolutionary multi-agent systems, investigating the collective intelligence emerging from agent interactions, cooperation, and societal structures, highlighting parallels to human social dynamics. Finally, we address the critical imperative of building safe, secure, and beneficial AI systems, emphasizing intrinsic and extrinsic security threats, ethical alignment, robustness, and practical mitigation strategies necessary for trustworthy real-world deployment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
糖糖发布了新的文献求助10
6秒前
7秒前
JamesPei应助谷雨采纳,获得10
7秒前
9秒前
严明发布了新的文献求助10
9秒前
忧虑的羊完成签到 ,获得积分10
9秒前
ewmmel发布了新的文献求助10
11秒前
领导范儿应助挚缘采纳,获得10
12秒前
橘涂初九发布了新的文献求助10
13秒前
觉皇完成签到,获得积分10
13秒前
14秒前
大模型应助dlfg采纳,获得10
15秒前
张楚懿发布了新的文献求助10
17秒前
17秒前
浮游应助dcy采纳,获得10
18秒前
柴桑青木应助DX120210165采纳,获得10
18秒前
18秒前
19秒前
大力的迎松完成签到,获得积分10
19秒前
ewmmel发布了新的文献求助10
20秒前
佳言2009发布了新的文献求助10
22秒前
23秒前
23秒前
yvonnecao发布了新的文献求助10
23秒前
24秒前
26秒前
子慕发布了新的文献求助10
27秒前
27秒前
海浪发布了新的文献求助10
28秒前
ewmmel发布了新的文献求助10
29秒前
29秒前
李李李发布了新的文献求助10
31秒前
星星发布了新的文献求助10
31秒前
JQ1130完成签到,获得积分10
31秒前
小涛完成签到,获得积分10
33秒前
JQ1130发布了新的文献求助10
35秒前
科研通AI5应助狄绮采纳,获得10
37秒前
英属维尔京群岛完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Development in Infancy 400
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4793489
求助须知:如何正确求助?哪些是违规求助? 4115499
关于积分的说明 12731955
捐赠科研通 3843767
什么是DOI,文献DOI怎么找? 2118742
邀请新用户注册赠送积分活动 1140879
关于科研通互助平台的介绍 1029349