生物
泛素
基因
遗传学
细胞生物学
计算生物学
进化生物学
作者
Parinita Agarwal,Anjali Chittora,Ayushi Verma,Pradeep K. Agarwal
标识
DOI:10.1089/dna.2025.0002
摘要
Abiotic stress causes major crop losses worldwide. Plants have evolved complex intricate signaling network involving transcriptional regulators and posttranslational modifications (PTMs). Ubiquitination-a key PTM-regulates protein degradation through the ubiquitin-proteasome system (UPS). The UPS plays a pivotal role in detecting and modulating plant responses to environmental fluctuations. The E3 ligase family in plants is extensive, offering high substrate specificity and playing a vital role in signaling and protein turnover. Really Interesting New Gene (RING) proteins primarily function as E3 ubiquitin ligases, their functional diversity facilitates the transfer of ubiquitin molecules to specific target proteins. Plants possess abscisic acid (ABA)-dependent and ABA-independent stress-signaling pathways. RING-type E3 ligases regulate ABA signaling either negatively or positively in response to stress by regulating protein degradation, modulating transcription factors, ABA biosynthesis, and degradation. This dynamic interaction between ABA and E3 ligase proteins helps plants to adapt to environmental stress. Negative regulators, such as AIP2 and OsDSG1, target ABI3 for degradation. Keep on going (KEG) ubiquitinates ABI5, ABF1, and ABF3, though KEG itself is subject to feedback regulation by ABA levels, leading to its degradation. Positive regulators include SDIR1, OsSDIR1, AIRP1, RHA2b/RHA2a, and XERICO, along with its maize orthologs ZmXerico1 and ZmXerico2. Additionally, SINAT5 and BOI regulate auxin and gibberellin signaling, integrating hormonal responses to stress. The functional diversity of RING-type E3 ligases offers promising targets for genetic engineering to enhance crop resilience under adverse environmental conditions. Understanding these molecular mechanisms could lead to the development of climate-resilient crops, crucial for sustaining global food security.
科研通智能强力驱动
Strongly Powered by AbleSci AI