已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Uncertain Search with Knowledge Transfer

计算机科学 知识转移 知识管理
作者
Woonghee Tim Huh,Michael Jong Kim,Mei-Chun Lin
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2023.00309
摘要

We consider a sequential search over a group of similar alternatives. The individual value of an alternative contains two components: an observable utility and an idiosyncratic value. Observable utilities share an unknown population distribution, which captures the similarity across the alternatives and allows for knowledge transfer within the group. Once a decision maker encounters an alternative, its utility is revealed immediately, whereas the idiosyncratic value is unobservable and needs to be learned by sampling. The goal is to select an alternative with the highest individual value, accounting for the sampling and search costs. A novel feature of this problem is the combination of the individual and population levels of learning. We formulate the problem as a Bayesian dynamic program and characterize the optimal policy by a threshold structure. We show that it depends on the difference between the mean estimates of the current alternative and the population. It is optimal to continue sampling if the difference is between a threshold pair; otherwise, accept the current alternative if it exceeds the upper threshold, and switch to a new one if it is below the lower threshold. Other structural properties are also derived to shed light on the effects of the two levels of learning. A key insight is that more uncertainty is preferable at the individual level, but less uncertainty is preferable at the population level. Various practical variants of the problem are also considered. This paper was accepted by Ilia Tsetlin, behavioral economics and decision analysis. Funding: W. T. Huh acknowledges support from the NSERC Discovery Grants (RGPIN 2020-04213) and the Canada Research Chair Program. The work of M. J. Kim was supported by the Natural Sciences and Engineering Research Council of Canada [NSERC Discovery Grant RGPIN-2024-05213]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.00309 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四夕发布了新的文献求助10
刚刚
xyyyy完成签到 ,获得积分10
2秒前
rofsc完成签到 ,获得积分10
2秒前
felix完成签到,获得积分10
2秒前
zwenng完成签到,获得积分10
4秒前
JOKER完成签到 ,获得积分10
4秒前
CRYLK完成签到 ,获得积分10
5秒前
duan完成签到 ,获得积分10
8秒前
怕黑的凡灵完成签到 ,获得积分10
8秒前
stevenliu67完成签到,获得积分10
8秒前
方方别方完成签到 ,获得积分10
9秒前
小杨爱吃羊完成签到 ,获得积分10
9秒前
大模型应助五公里小战士采纳,获得10
9秒前
11秒前
李健的小迷弟应助HIBARRA采纳,获得10
11秒前
zhuhua完成签到,获得积分10
13秒前
科研通AI5应助活力的天空采纳,获得10
13秒前
大帅比完成签到 ,获得积分10
13秒前
洛谷图灵姬完成签到,获得积分10
15秒前
幽默的忆霜完成签到 ,获得积分10
16秒前
奚世军发布了新的文献求助10
17秒前
George完成签到,获得积分10
17秒前
伊蕾娜完成签到 ,获得积分10
17秒前
简单的熊猫完成签到,获得积分10
19秒前
畅快的饼干完成签到 ,获得积分10
20秒前
Ruoru发布了新的文献求助10
21秒前
wenhao完成签到 ,获得积分10
24秒前
Owen应助kk采纳,获得10
29秒前
青糯完成签到 ,获得积分10
33秒前
健壮不斜发布了新的文献求助10
37秒前
这就去学习完成签到 ,获得积分10
40秒前
焦糖布丁的滋味完成签到,获得积分10
52秒前
你喜欢什么样子的我演给你看完成签到 ,获得积分10
54秒前
55秒前
科研通AI5应助阿腾采纳,获得30
56秒前
57秒前
1分钟前
称心如意完成签到 ,获得积分10
1分钟前
852应助等待的剑身采纳,获得10
1分钟前
卡夫卡的熊完成签到,获得积分10
1分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Brands:Meaning and Value in Media Culture 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827132
求助须知:如何正确求助?哪些是违规求助? 3369470
关于积分的说明 10456199
捐赠科研通 3089209
什么是DOI,文献DOI怎么找? 1699683
邀请新用户注册赠送积分活动 817443
科研通“疑难数据库(出版商)”最低求助积分说明 770239