海马
可卷曲的尾巴
生物
解剖
计算机科学
生态学
作者
Dries Marzougui,Riddhi Das,Barbara Mazzolai,Dominique Adriaens,Francis wyffels
标识
DOI:10.1098/rsif.2024.0876
摘要
Seahorses possess a unique tail muscle architecture that enables efficient grasping and anchoring onto objects. This prehensile ability is crucial for their survival, as it allows them to resist currents, cling to mates during reproduction and remain camouflaged to avoid predators. Unlike in any other fish, the muscles of the seahorse tail form long, parallel sheets that can span up to 11 vertebral segments. This study investigates how this distinctive muscle arrangement influences the mechanics of prehension. Through in silico simulations validated by a three-dimensional-printed prototype, we reveal the complementary roles of these elongated muscles alongside shorter, intersegmental muscles. Furthermore, we show that muscles spanning more segments allow greater contractile forces and provide more efficient force-to-torque transmissions. Our findings confirm that the elongated muscle–tendon organization in the seahorse tail provides a functional advantage for grasping, offering insights into the evolutionary adaptations of this unique tail structure.
科研通智能强力驱动
Strongly Powered by AbleSci AI