生物降解
材料科学
植入
骨科手术
生物医学工程
复合材料
医学
外科
化学
有机化学
作者
Hari Raj K,Gnanavel Sadasivam,Vamsi Krishna Dommeti
标识
DOI:10.1021/acsabm.5c00603
摘要
Implant failure continues to be a critical concern in orthopedic interventions, frequently resulting in consequences such as fractures and necessitating revision procedures. Multiple causes, such as mechanical failure, inadequate osteointegration, and corrosion, lead to implant failure over time. This study seeks to resolve these challenges by surface-modifying biodegradable materials such as poly(lactic acid) (PLA) and AZ31 Mg alloy (Mg), integrating novel Biocomposites of titanium-hydroxyapatite (Ti-HA) to improve their efficacy. The altered materials aim to enhance mechanical strength, osteointegration, and regulated deterioration, thus minimizing the likelihood of implant failure. The characterization techniques validated the Biocomposites' adhesion on the implant's surface, mechanical analysis and corrosion resistance were also validated with the help of UTS and electrochemical studies, and in vitro analyses exhibited substantial improvements in material durability and biological compatibility. The result shows that the Biocomposite assistance improved the overall performance of the implant material. This work presents a pioneering strategy to mitigate implant failure by emphasizing these enhancements, facilitating more dependable and efficient solutions in orthopedic implantation, ultimately enhancing patient outcomes and decreasing the necessity for revision procedures. The earlier segment of the research study was confirmed with another Biocomposites (Ti-Zr), representing a continuation of that research work.
科研通智能强力驱动
Strongly Powered by AbleSci AI