A Computational Study of the Tool Replacement Problem

计算机科学 数学优化 数学
作者
Yuzhuo Qiu,Mikhail Cherniavskii,Boris Goldengorin,Pãnos M. Pardalos
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0474
摘要

In the Tool Replacement Problem (TRP) for the given sequence of jobs, we consider a discretized interval where each point in time corresponds to a specific job and its collection of tools sufficient to complete that job. A passive interval w.r.t. a specific tool is an interval where that tool is not used at any point within that interval but is used at the boundary points in time. The TRP aims to find a loading schedule of tools (tool switches) that minimizes the total number of tool loadings in the magazine. Based on the concept of a passive interval, we introduce our reformulation of the TRP as follows. The minimum total number of tool loadings (switches) in the TRP is equal to the difference between the total number of tools for all scheduled jobs with tool repetitions and the maximum total number of passive intervals. We solve the TRP to optimality by designing and implementing two algorithms: one for finding the optimal objective function value (Insertion Greedy Algorithm (IGA)) and the other (To Full Magazine (ToFullMag) algorithm) for finding an optimal solution, that is, an optimal sequence of tool loadings. We apply our reformulation of the TRP to design the IGA full algorithm starting with IGA and continuing with ToFullMag. The IGA full achieves the best possible running time and thus settles the computational complexity of TRP. We prove that IGA full outperforms the most popular Keep Tool Needed Soonest (KTNS) algorithm by at least an order of magnitude in terms of CPU time. Moreover, after replacing the KTNS algorithm by IGA full within the state-of-the-art Hybrid Genetic Searches heuristic for solving the job Scheduling and tool Switching Problem (SSP), our computational study shows the reduction of CPU times by at least an order of magnitude for medium- and large-scale SSP data sets. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: The research of Y. Qiu and P. M. Pardalos is supported by the National Natural Science Foundation of China [Grant 72371135], the National Foreign Expert Program from the Ministry of Science and Technology of China [Grant G2021014038L], and the Key Project from Jiangsu Social Science Foundation [Grant 23GLA001]. M. Cherniavskii and B. Goldengorin were supported by the Ministry of Science and Higher Education of the Russian Federation (Goszadaniye), Project No. FSMG-2024-0025. The work of P. M. Pardalos was conducted within the framework of the Basic Research Program at the National Research University Higher School of Economics (HSE). The article was prepared within the framework of the project “Scientific and Educational Mathematical Center, North-West Center for Mathematical Research named after Sofia Kovalevskaya”, 2025. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0474 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0474 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
norman驳回了冰魂应助
2秒前
耍酷青梦完成签到 ,获得积分10
2秒前
kakafan完成签到,获得积分10
4秒前
科研通AI5应助山山而川采纳,获得10
4秒前
迷路发布了新的文献求助10
6秒前
科研通AI5应助诸天真采纳,获得10
7秒前
10秒前
神内打工人完成签到 ,获得积分10
10秒前
13秒前
体贴凤灵发布了新的文献求助10
15秒前
Hello应助en采纳,获得10
15秒前
15秒前
在水一方应助周浩宇采纳,获得10
16秒前
ni完成签到,获得积分10
17秒前
bookgg完成签到 ,获得积分10
18秒前
Yue发布了新的文献求助10
19秒前
19秒前
20秒前
Owen应助研友_nEjYyZ采纳,获得10
20秒前
英姑应助Nat采纳,获得10
21秒前
21秒前
山山而川发布了新的文献求助10
21秒前
25秒前
英姑应助体贴凤灵采纳,获得10
25秒前
火星上的安柏完成签到,获得积分10
26秒前
阳光发布了新的文献求助10
27秒前
Yue完成签到,获得积分10
27秒前
温暖涫完成签到 ,获得积分10
29秒前
29秒前
ding应助眯眯眼的朋友采纳,获得10
32秒前
liutg24完成签到,获得积分10
32秒前
KKK研发布了新的文献求助10
34秒前
悦耳孤萍发布了新的文献求助10
34秒前
星辰大海应助17835152738采纳,获得30
36秒前
36秒前
37秒前
38秒前
jyy完成签到,获得积分10
41秒前
无限安蕾发布了新的文献求助30
41秒前
dddy发布了新的文献求助10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781842
求助须知:如何正确求助?哪些是违规求助? 3327435
关于积分的说明 10231080
捐赠科研通 3042297
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758808