已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diffusion Models in Low-Level Vision: A Survey

计算机科学 人工智能 计算机视觉 扩散 模式识别(心理学) 热力学 物理
作者
Chunming He,Yuqi Shen,Chi-Chun Fang,Fengyang Xiao,Longxiang Tang,Yulun Zhang,Wangmeng Zuo,Zhenhua Guo,Xiu Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-20
标识
DOI:10.1109/tpami.2025.3545047
摘要

Deep generative models have gained considerable attention in low-level vision tasks due to their powerful generative capabilities. Among these, diffusion model-based approaches, which employ a forward diffusion process to degrade an image and a reverse denoising process for image generation, have become particularly prominent for producing high-quality, diverse samples with intricate texture details. Despite their widespread success in low-level vision, there remains a lack of a comprehensive, insightful survey that synthesizes and organizes the advances in diffusion model-based techniques. To address this gap, this paper presents the first comprehensive review focused on denoising diffusion models applied to low-level vision tasks, covering both theoretical and practical contributions. We outline three general diffusion modeling frameworks and explore their connections with other popular deep generative models, establishing a solid theoretical foundation for subsequent analysis. We then categorize diffusion models used in low-level vision tasks from multiple perspectives, considering both the underlying framework and the target application. Beyond natural image processing, we also summarize diffusion models applied to other low-level vision domains, including medical imaging, remote sensing, and video processing. Additionally, we provide an overview of widely used benchmarks and evaluation metrics in low-level vision tasks. Our review includes an extensive evaluation of diffusion model-based techniques across six representative tasks, with both quantitative and qualitative analysis. Finally, we highlight the limitations of current diffusion models and propose four promising directions for future research. This comprehensive review aims to foster a deeper understanding of the role of denoising diffusion models in low-level vision. For those interested, a curated list of diffusion model-based techniques, datasets, and related information across over 20 low-level vision tasks is available at https://github.com/ChunmingHe/awesome-diffusion-models-in-low-level-vision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
风雨无阻发布了新的文献求助10
5秒前
斯文火龙果完成签到,获得积分20
6秒前
monster0101完成签到 ,获得积分10
8秒前
李健应助斯文火龙果采纳,获得10
10秒前
淡然紫蓝应助科研通管家采纳,获得10
14秒前
平心定气完成签到 ,获得积分10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
14秒前
ananan完成签到 ,获得积分10
17秒前
18秒前
20秒前
25秒前
huhu发布了新的文献求助10
25秒前
古铜完成签到 ,获得积分10
28秒前
星期八发布了新的文献求助10
29秒前
lainey发布了新的文献求助10
30秒前
32秒前
乐观夜春发布了新的文献求助10
34秒前
35秒前
顾矜应助不拿拿采纳,获得10
37秒前
FFr大师发布了新的文献求助10
40秒前
sunshine应助小哩笑笑采纳,获得10
44秒前
46秒前
48秒前
多多完成签到,获得积分10
48秒前
49秒前
51秒前
小宝完成签到,获得积分10
51秒前
学术通zzz发布了新的文献求助10
52秒前
53秒前
在水一方应助默默的鬼神采纳,获得10
54秒前
55秒前
56秒前
sunyifan完成签到,获得积分10
58秒前
Lucas应助宇宙采纳,获得10
1分钟前
爆米花应助宇宙采纳,获得30
1分钟前
遗忘完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819841
求助须知:如何正确求助?哪些是违规求助? 3362733
关于积分的说明 10418564
捐赠科研通 3081019
什么是DOI,文献DOI怎么找? 1694908
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768494