Covalent organic networks for in situ entrapment of enzymes with superior robustness and durability

催化作用 化学 共价键 化学工程 葡萄糖氧化酶 组合化学 材料科学 有机化学 纳米技术 工程类
作者
Zhenhua Wu,Huiting Shan,Yushuai Jiao,Shouying Huang,Xiaodong Wang,Kang Liang,Jiafu Shi
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:450: 138446-138446 被引量:21
标识
DOI:10.1016/j.cej.2022.138446
摘要

Enzyme-based nanobiohybrids (EnNBHs) are an emerging biocatalyst family that can manufacture industrial products such as fuels and chemicals in a green and low-carbon manner. Designing high-performance EnNBHs could confer enzymes with superior robustness and durability, while current strategies confront grand challenges. Indeed, the reticular chemistry materials, especially metal–organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bond organic frameworks (HOFs), are several good candidates for constructing EnNBHs. While, MOFs and HOFs are constructed by coordination bond and hydrogen bond, respectively, which may be destroyed by acid or organic solvents, thus causing structural degradation and loss of protection to enzymes. The use of acetic acid (6 mol/L) and organic solvents is conventional conditions for the synthesis of COFs, which may be inapplicable for de novo constructing EnNBHs. Herein, a facile and versatile in situ entrapment strategy is developed to entrap a series of enzymes in crystalline imine-based covalent organic networks (CONs) under mild conditions. Notably, the growth rate of CONs induced by glucose oxidase (GOx) is increased by 2 folds than that of CONs in the absence of GOx. Moreover, the crystalline CONs could create confinement environment and safeguard the hosted enzymes from being denatured under unfavorable conditions. Given moderate crystallinity of CONs, short-range ordered micro/meso-porous structures are generated. Compared with [email protected], the larger transport channels for reactants/products in [email protected] result in 1.73-fold enhancement in the catalytic efficiency. The crystalline CONs could also serve as a cell-mimic nanoreactor for multienzyme catalysis, demonstrating the potential applications in biomanufacturing, bioimaging, biosensing and so on.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
beichuanheqi发布了新的文献求助10
刚刚
自信筮完成签到,获得积分10
1秒前
无糖零脂发布了新的文献求助10
2秒前
852应助研研研采纳,获得10
2秒前
yanyan完成签到,获得积分10
3秒前
XiaoO发布了新的文献求助10
4秒前
wanglei完成签到,获得积分10
4秒前
4秒前
ww完成签到,获得积分10
5秒前
研友_P85D6Z发布了新的文献求助10
6秒前
6秒前
6秒前
无糖零脂完成签到,获得积分10
7秒前
李sir完成签到 ,获得积分10
7秒前
SYLH应助guoguo采纳,获得30
7秒前
9秒前
石斑鱼完成签到,获得积分10
9秒前
猫的树发布了新的文献求助10
9秒前
华仔应助不忘初心采纳,获得30
11秒前
12秒前
瓜子发布了新的文献求助10
12秒前
orixero应助小刘采纳,获得10
13秒前
sjxjjxj发布了新的文献求助10
13秒前
小伊001完成签到,获得积分10
13秒前
13秒前
山顶洞人关注了科研通微信公众号
13秒前
霸气安蕾发布了新的文献求助10
14秒前
子羽发布了新的文献求助10
15秒前
16秒前
李健的小迷弟应助猫的树采纳,获得10
16秒前
17秒前
17秒前
郭德好完成签到,获得积分10
17秒前
xiao发布了新的文献求助10
20秒前
21秒前
桐桐应助sjxjjxj采纳,获得10
21秒前
不当脆脆鲨完成签到,获得积分10
22秒前
26秒前
26秒前
29秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866692
求助须知:如何正确求助?哪些是违规求助? 3409143
关于积分的说明 10661724
捐赠科研通 3133206
什么是DOI,文献DOI怎么找? 1728088
邀请新用户注册赠送积分活动 832684
科研通“疑难数据库(出版商)”最低求助积分说明 780393