RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning

医学 放射科 学习迁移 人工智能 磁共振成像 接收机工作特性 内科学 计算机科学
作者
Xueyan Mei,Zelong Liu,Philip M. Robson,Brett Marinelli,Mingqian Huang,Amish Doshi,Adam Jacobi,Chendi Cao,Katherine E. Link,Thomas Yang,Ying Wang,Hayit Greenspan,Timothy Deyer,Zahi A. Fayad,Yang Yang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:4 (5) 被引量:126
标识
DOI:10.1148/ryai.210315
摘要

To demonstrate the value of pretraining with millions of radiologic images compared with ImageNet photographic images on downstream medical applications when using transfer learning.This retrospective study included patients who underwent a radiologic study between 2005 and 2020 at an outpatient imaging facility. Key images and associated labels from the studies were retrospectively extracted from the original study interpretation. These images were used for RadImageNet model training with random weight initiation. The RadImageNet models were compared with ImageNet models using the area under the receiver operating characteristic curve (AUC) for eight classification tasks and using Dice scores for two segmentation problems.The RadImageNet database consists of 1.35 million annotated medical images in 131 872 patients who underwent CT, MRI, and US for musculoskeletal, neurologic, oncologic, gastrointestinal, endocrine, abdominal, and pulmonary pathologic conditions. For transfer learning tasks on small datasets-thyroid nodules (US), breast masses (US), anterior cruciate ligament injuries (MRI), and meniscal tears (MRI)-the RadImageNet models demonstrated a significant advantage (P < .001) to ImageNet models (9.4%, 4.0%, 4.8%, and 4.5% AUC improvements, respectively). For larger datasets-pneumonia (chest radiography), COVID-19 (CT), SARS-CoV-2 (CT), and intracranial hemorrhage (CT)-the RadImageNet models also illustrated improved AUC (P < .001) by 1.9%, 6.1%, 1.7%, and 0.9%, respectively. Additionally, lesion localizations of the RadImageNet models were improved by 64.6% and 16.4% on thyroid and breast US datasets, respectively.RadImageNet pretrained models demonstrated better interpretability compared with ImageNet models, especially for smaller radiologic datasets.Keywords: CT, MR Imaging, US, Head/Neck, Thorax, Brain/Brain Stem, Evidence-based Medicine, Computer Applications-General (Informatics) Supplemental material is available for this article. Published under a CC BY 4.0 license.See also the commentary by Cadrin-Chênevert in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助灵感大王喵采纳,获得10
刚刚
刚刚
JJ完成签到,获得积分10
刚刚
汤泽琪发布了新的文献求助10
刚刚
666发布了新的文献求助10
2秒前
2秒前
乐乐完成签到,获得积分10
3秒前
rachaoer完成签到 ,获得积分10
4秒前
zhl完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
科目三应助啦啦啦采纳,获得10
4秒前
6秒前
6秒前
共享精神应助鲸鱼采纳,获得10
7秒前
丁小丁完成签到,获得积分10
7秒前
8秒前
惊回发布了新的文献求助10
9秒前
9秒前
科目三应助shadow采纳,获得10
9秒前
Flora发布了新的文献求助10
9秒前
123发布了新的文献求助10
10秒前
10秒前
韵诗发布了新的文献求助10
11秒前
11秒前
斯文明杰发布了新的文献求助10
11秒前
激动烦凡应助Deannn778采纳,获得10
12秒前
清爽的梦秋完成签到,获得积分10
14秒前
14秒前
合适冰棍发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
啦啦啦发布了新的文献求助10
15秒前
隐形又柔完成签到,获得积分10
16秒前
善学以致用应助dfd采纳,获得10
17秒前
17秒前
123完成签到,获得积分10
18秒前
bkagyin应助论文侠采纳,获得10
19秒前
鲸鱼发布了新的文献求助10
19秒前
20秒前
科研通AI5应助合适冰棍采纳,获得10
21秒前
领导范儿应助苏诗兰采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4637298
求助须知:如何正确求助?哪些是违规求助? 4031260
关于积分的说明 12472748
捐赠科研通 3718189
什么是DOI,文献DOI怎么找? 2052087
邀请新用户注册赠送积分活动 1083300
科研通“疑难数据库(出版商)”最低求助积分说明 965230