亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning for prediction of post-thrombectomy outcomes based on admission CT angiography in large vessel occlusion stroke

医学 接收机工作特性 置信区间 逻辑回归 计算机断层血管造影 改良兰金量表 冲程(发动机) 放射科 闭塞 血管造影 内科学 缺血性中风 缺血 机械工程 工程类
作者
Jakob Sommer,Fiona Dierksen,Tal Zeevi,Tran Anh Tuan,Emily W. Avery,Adrian Mak,Ajay Malhotra,Charles Matouk,Guido J. Falcone,Victor Torres‐Lopez,Sanjey Aneja,John S. Duncan,Lauren Sansing,Kevin N. Sheth,Seyedmehdi Payabvash
出处
期刊:Frontiers in artificial intelligence [Frontiers Media SA]
卷期号:7 被引量:3
标识
DOI:10.3389/frai.2024.1369702
摘要

Purpose Computed Tomography Angiography (CTA) is the first line of imaging in the diagnosis of Large Vessel Occlusion (LVO) strokes. We trained and independently validated end-to-end automated deep learning pipelines to predict 3-month outcomes after anterior circulation LVO thrombectomy based on admission CTAs. Methods We split a dataset of 591 patients into training/cross-validation (n = 496) and independent test set (n = 95). We trained separate models for outcome prediction based on admission “CTA” images alone, “CTA + Treatment” (including time to thrombectomy and reperfusion success information), and “CTA + Treatment + Clinical” (including admission age, sex, and NIH stroke scale). A binary (favorable) outcome was defined based on a 3-month modified Rankin Scale ≤ 2. The model was trained on our dataset based on the pre-trained ResNet-50 3D Convolutional Neural Network (“MedicalNet”) and included CTA preprocessing steps. Results We generated an ensemble model from the 5-fold cross-validation, and tested it in the independent test cohort, with receiver operating characteristic area under the curve (AUC, 95% confidence interval) of 70 (0.59–0.81) for “CTA,” 0.79 (0.70–0.89) for “CTA + Treatment,” and 0.86 (0.79–0.94) for “CTA + Treatment + Clinical” input models. A “Treatment + Clinical” logistic regression model achieved an AUC of 0.86 (0.79–0.93). Conclusion Our results show the feasibility of an end-to-end automated model to predict outcomes from admission and post-thrombectomy reperfusion success. Such a model can facilitate prognostication in telehealth transfer and when a thorough neurological exam is not feasible due to language barrier or pre-existing morbidities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
善学以致用应助缥缈傥采纳,获得10
2秒前
8秒前
iappear发布了新的文献求助10
12秒前
12秒前
15秒前
缥缈傥发布了新的文献求助10
16秒前
笑点低归尘完成签到,获得积分10
17秒前
英姑应助青柠采纳,获得10
17秒前
29秒前
32秒前
ahai完成签到 ,获得积分10
40秒前
rwq完成签到 ,获得积分10
41秒前
FashionBoy应助iappear采纳,获得10
43秒前
Aaron完成签到 ,获得积分10
45秒前
46秒前
ANR发布了新的文献求助10
47秒前
1分钟前
1分钟前
ANR完成签到 ,获得积分20
1分钟前
青柠发布了新的文献求助10
1分钟前
1分钟前
缥缈的ME完成签到,获得积分10
1分钟前
zqq完成签到,获得积分0
1分钟前
1分钟前
1分钟前
科研启动发布了新的文献求助10
1分钟前
1分钟前
1分钟前
sevenhill应助缥缈的ME采纳,获得20
1分钟前
香蕉新儿完成签到,获得积分10
1分钟前
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Huzhu应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Huzhu应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493845
求助须知:如何正确求助?哪些是违规求助? 4591820
关于积分的说明 14434782
捐赠科研通 4524265
什么是DOI,文献DOI怎么找? 2478740
邀请新用户注册赠送积分活动 1463718
关于科研通互助平台的介绍 1436502