Spatio-temporal copper prospectivity in the American Cordillera predicted by positive-unlabeled machine learning

远景图 地质学 地球化学 古生物学 冶金 构造盆地 材料科学
作者
Christopher Alfonso,R. Dietmar Müller,Ben Mather,Michele Anthony
出处
期刊:Geological Society of America Bulletin [Geological Society of America]
卷期号:137 (1-2): 702-711 被引量:4
标识
DOI:10.1130/b37614.1
摘要

Abstract Porphyry copper deposits contain the majority of the world’s discovered mineable reserves of copper. While these deposits are known to form in magmatic arcs along subduction zones, the precise contributions of different factors in the subducting and overriding plates to this process are not well constrained, making predictive prospectivity mapping difficult. Empirical machine learning-based approaches to this problem have been explored in the past but are hampered by the lack of comprehensive labeled data for training classification models. Here we present a model trained using a semi-supervised positive-unlabeled (PU) learning algorithm, trained using only one set of labeled data: known deposit locations. Time-dependent and present-day mineral prospectivity maps created using the classifier show the past evolution and present-day state of porphyry copper mineralization in the American Cordillera, with several zones of high predicted prospectivity unrelated to any known deposits presenting potential opportunity for future exploration targeting. Feature importance and partial dependence analysis shed light on the complex mechanisms behind porphyry copper formation, identifying thick arc crust, rapid convergence, and a sufficient supply of volatile fluids into the subduction system as the primary prerequisites for mineralization. Significantly different results between models trained on data from North or South America suggest the existence of extensive variety among porphyry copper provinces. High values of performance metrics for North America, including receiver operating characteristic area-under-the-curve (ROC AUC), indicate that PU models are capable of exhibiting equal or better performance when compared to traditional classifiers. However, relatively poor metric scores for South American data demonstrate that model performance is not necessarily uniform across different tectonic settings and care should, therefore, be taken when applying the PU method to new areas. Nonetheless, the methods developed here are expected to be applicable to data-poor regions and time periods across the globe, potentially identifying many more potential targets for porphyry copper exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流星雨完成签到 ,获得积分10
1秒前
Rolling完成签到,获得积分10
3秒前
Hello应助时尚的开山采纳,获得10
7秒前
尊敬凝荷完成签到 ,获得积分10
16秒前
闻巷雨完成签到 ,获得积分10
19秒前
聪慧语山完成签到 ,获得积分0
20秒前
浮游应助时尚的开山采纳,获得10
20秒前
MchemG应助ho采纳,获得30
22秒前
权青曼完成签到,获得积分10
23秒前
微笑的若魔完成签到 ,获得积分10
24秒前
jia7完成签到 ,获得积分10
27秒前
t铁核桃1985完成签到 ,获得积分10
29秒前
面壁人2233完成签到,获得积分10
35秒前
zjy发布了新的文献求助20
37秒前
ljxr完成签到 ,获得积分10
40秒前
七里香完成签到 ,获得积分10
41秒前
淡然的芷荷完成签到 ,获得积分10
43秒前
光亮白山完成签到 ,获得积分10
48秒前
56秒前
华仔应助xinxinxin采纳,获得10
56秒前
57秒前
香蕉冬云完成签到 ,获得积分10
58秒前
58秒前
MchemG应助ho采纳,获得30
1分钟前
w0304hf完成签到,获得积分10
1分钟前
星川完成签到,获得积分10
1分钟前
jiaozitop完成签到,获得积分10
1分钟前
本本完成签到 ,获得积分10
1分钟前
zjy完成签到,获得积分10
1分钟前
甜蜜耳机完成签到 ,获得积分10
1分钟前
MchemG应助ho采纳,获得30
1分钟前
wing完成签到 ,获得积分10
1分钟前
浮游应助猪猪hero采纳,获得10
1分钟前
mafukairi应助猪猪hero采纳,获得10
1分钟前
风中冰香应助猪猪hero采纳,获得10
1分钟前
santory应助猪猪hero采纳,获得10
1分钟前
彭于晏应助猪猪hero采纳,获得10
1分钟前
浮游应助猪猪hero采纳,获得10
1分钟前
wanci应助猪猪hero采纳,获得30
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304275
求助须知:如何正确求助?哪些是违规求助? 4450880
关于积分的说明 13849976
捐赠科研通 4337819
什么是DOI,文献DOI怎么找? 2381673
邀请新用户注册赠送积分活动 1376668
关于科研通互助平台的介绍 1343751