REDef-DETR: real-time and efficient DETR for industrial surface defect detection

计算机科学 环境科学
作者
Dejian Li,Changhong Jiang,Tielin Liang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105411-105411 被引量:11
标识
DOI:10.1088/1361-6501/ad60ea
摘要

Abstract Industrial surface defect detection is an important part of industrial production, which aims to identify and detecting various defects on the surface of product to ensure quality and meet customer requirements. With the development of deep learning and image processing technologies, the surface defect detection methods based on computer vision has become the mainstream method. However, the prevalent convolutional neural network-based defect detection methods also have many problems. For example, these methods rely on post-processing of Non-Maximum Suppression and have poor detection ability for small targets, which affects the speed and accuracy of surface defect detection in industrial scenarios. Therefore, we propose a novel DEtection TRansformer-based surface defect detection method. Firstly, we propose a Multi-scale Contextual Information Dilated module and fuse it into the backbone. The module is mainly composed of large kernel convolutions, which aims to expand the receptive field of the model, thus reducing the leakage rate of the model. Moreover, we design an efficient encoder which mainly contains two important modules, namely feature enhancement based on cascaded group attention module and efficient feature fusion module based on content-aware. The former module effectively enhances the high-level semantic information extracted by the backbone, thus enabling the model to better interpret features, and it can improve the problem of high computational cost of transformer encoder, thus increasing the detection speed. The latter module performs multi-scale feature fusion across the feature information of various scales, thus improving the detection accuracy of the model for small-size defects. Experimental results show that the proposed method achieves 80.6%mAP and 80.3FPS on NEU-DET, and 98.0%mAP and 79.4FPS on PCB-DET. Our proposed method exhibits excellent detection performance and achieves real-time and efficient surface defect detection capability to meet the needs of industrial surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LL发布了新的文献求助10
1秒前
1秒前
彭于晏应助维护采纳,获得10
1秒前
2秒前
2秒前
风清扬发布了新的文献求助10
2秒前
Ava应助加油采纳,获得10
3秒前
在水一方应助111采纳,获得10
4秒前
雏菊发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
7秒前
9秒前
9秒前
噼里啪啦发布了新的文献求助10
9秒前
Owen应助开朗的小蕾采纳,获得10
11秒前
Ava应助开朗的小蕾采纳,获得10
11秒前
12秒前
12秒前
13秒前
我是大兴完成签到,获得积分10
14秒前
15秒前
15秒前
鞋子亮发布了新的文献求助10
16秒前
笑点低的文轩完成签到,获得积分10
16秒前
juzg完成签到,获得积分10
16秒前
看100篇文献完成签到,获得积分10
16秒前
shenyanlei发布了新的文献求助10
17秒前
19秒前
优美紫槐发布了新的文献求助10
19秒前
21秒前
培培发布了新的文献求助10
21秒前
21秒前
白云苍狗发布了新的文献求助20
22秒前
22秒前
苏幕遮发布了新的文献求助10
22秒前
暄暄大王发布了新的文献求助10
22秒前
酷波er应助jksg采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606007
求助须知:如何正确求助?哪些是违规求助? 4690472
关于积分的说明 14863982
捐赠科研通 4703318
什么是DOI,文献DOI怎么找? 2542392
邀请新用户注册赠送积分活动 1507915
关于科研通互助平台的介绍 1472168