REDef-DETR: real-time and efficient DETR for industrial surface defect detection

计算机科学 环境科学
作者
Dejian Li,Changhong Jiang,Tielin Liang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105411-105411 被引量:1
标识
DOI:10.1088/1361-6501/ad60ea
摘要

Abstract Industrial surface defect detection is an important part of industrial production, which aims to identify and detecting various defects on the surface of product to ensure quality and meet customer requirements. With the development of deep learning and image processing technologies, the surface defect detection methods based on computer vision has become the mainstream method. However, the prevalent convolutional neural network-based defect detection methods also have many problems. For example, these methods rely on post-processing of Non-Maximum Suppression and have poor detection ability for small targets, which affects the speed and accuracy of surface defect detection in industrial scenarios. Therefore, we propose a novel DEtection TRansformer-based surface defect detection method. Firstly, we propose a Multi-scale Contextual Information Dilated module and fuse it into the backbone. The module is mainly composed of large kernel convolutions, which aims to expand the receptive field of the model, thus reducing the leakage rate of the model. Moreover, we design an efficient encoder which mainly contains two important modules, namely feature enhancement based on cascaded group attention module and efficient feature fusion module based on content-aware. The former module effectively enhances the high-level semantic information extracted by the backbone, thus enabling the model to better interpret features, and it can improve the problem of high computational cost of transformer encoder, thus increasing the detection speed. The latter module performs multi-scale feature fusion across the feature information of various scales, thus improving the detection accuracy of the model for small-size defects. Experimental results show that the proposed method achieves 80.6%mAP and 80.3FPS on NEU-DET, and 98.0%mAP and 79.4FPS on PCB-DET. Our proposed method exhibits excellent detection performance and achieves real-time and efficient surface defect detection capability to meet the needs of industrial surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中心湖小海棠完成签到,获得积分10
刚刚
1秒前
yrma发布了新的文献求助10
1秒前
Oak完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
Zhang发布了新的文献求助30
3秒前
15完成签到,获得积分10
3秒前
3秒前
后来应助凝凝小采纳,获得10
4秒前
不懈奋进应助西出钰门采纳,获得30
4秒前
一条小鱼完成签到 ,获得积分10
5秒前
慕青应助优美的背包采纳,获得10
5秒前
year发布了新的文献求助10
5秒前
orixero应助科研雪瑞采纳,获得10
6秒前
momo发布了新的文献求助50
6秒前
凡人完成签到,获得积分10
6秒前
奈布发布了新的文献求助10
7秒前
7秒前
7秒前
传奇3应助guojingjing采纳,获得10
7秒前
科研通AI5应助Luna采纳,获得10
8秒前
在水一方应助wo采纳,获得10
8秒前
帅气的猫发布了新的文献求助10
8秒前
unowhoiam发布了新的文献求助10
9秒前
9秒前
10秒前
nefu biology发布了新的文献求助10
10秒前
yls发布了新的文献求助10
11秒前
stormhero发布了新的文献求助20
12秒前
12秒前
刻刻完成签到,获得积分10
13秒前
黄青青完成签到,获得积分10
13秒前
zho发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
自由的雨南完成签到,获得积分10
14秒前
jsxuyueming发布了新的文献求助10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808831
求助须知:如何正确求助?哪些是违规求助? 3353506
关于积分的说明 10365583
捐赠科研通 3069749
什么是DOI,文献DOI怎么找? 1685746
邀请新用户注册赠送积分活动 810704
科研通“疑难数据库(出版商)”最低求助积分说明 766300