MRI-based Intratumoral and Peritumoral Radiomics for Prognosis Prediction in Glioma Patients

医学 胶质瘤 接收机工作特性 比例危险模型 逻辑回归 放射性武器 随机森林 无线电技术 单变量分析 放射科 人工智能 肿瘤科 多元分析 内科学 癌症研究 计算机科学
作者
Min Gao,Jingyi Cheng,Anqi Qiu,Zhao Dong,Jie Wang,Jun Liu
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (11): e1383-e1393 被引量:1
标识
DOI:10.1016/j.crad.2024.08.005
摘要

Highlights•Combined intratumoral and peritumoral radiomics predict glioma prognosis.•Insights into peritumor microenvironment aid individualized surgical plans.•T2WI strongly correlates with glioma prognosis, more than T1-enhanced sequences.•T2WI provides richer content for future multimodal MRI research.AbstractObjectiveThe purpose of this study was to identify robust radiological features from intratumoral and peritumoral regions, evaluate MRI protocols and machine learning methods for overall survival stratification of glioma patients, and explore the relationship between radiological features and the tumor microenvironment.MethodsA retrospective analysis was conducted on 163 glioma patients, divided into a training set (n=113) and a testing set (n=50). For each patient, 2135 features were extracted from clinical MRI. Feature selection was performed using the Minimum Redundancy Maximum Relevance method and the Random Forest (RF) algorithm. Prognostic factors were assessed using the Cox proportional hazards model. Four machine learning models (RF, Logistic Regression, Support Vector Machine, and XGBoost) were trained on clinical and radiological features from tumor and peritumoral regions. Model evaluations on the testing set used Receiver Operating Characteristic curves.ResultsAmong the 163 patients, 96 had an overall survival (OS) of less than three years post-surgery, while 67 had an OS of more than three years. Univariate Cox regression in the validation set indicated that age (p=0.003) and tumor grade (p<0.001) were positively associated with the risk of death within three years post-surgery. The final predictive model incorporated 13 radiological and 7 clinical features. The RF model, combining intratumor and peritumor radiomics, achieved the best predictive performance (AUC = 0.91; ACC = 0.86), outperforming single-region models.ConclusionCombined intratumoral and peritumoral radiomics can improve survival prediction and has potential as a practical imaging biomarker to guide clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的棉花糖完成签到,获得积分10
2秒前
3秒前
刘炳序发布了新的文献求助10
3秒前
小超完成签到,获得积分10
3秒前
abcdefg发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
李爱国应助103921wjk采纳,获得10
6秒前
小蘑菇应助drdouxia采纳,获得10
7秒前
8秒前
9秒前
熊猫侠发布了新的文献求助10
9秒前
10秒前
桃子发布了新的文献求助10
11秒前
11秒前
斯文明杰发布了新的文献求助10
11秒前
11秒前
Rye227应助如意的书南采纳,获得10
12秒前
13秒前
青青2020完成签到,获得积分10
13秒前
13秒前
orixero应助www采纳,获得10
13秒前
13秒前
wdnyrrc发布了新的文献求助10
14秒前
zhc发布了新的文献求助30
16秒前
酷波er应助aha采纳,获得10
17秒前
jason发布了新的文献求助10
17秒前
squeak完成签到,获得积分10
18秒前
MartinaLZ应助熊猫侠采纳,获得10
19秒前
103921wjk发布了新的文献求助10
19秒前
上官若男应助斯文明杰采纳,获得10
19秒前
22秒前
23秒前
阿飘应助科研通管家采纳,获得10
23秒前
CWNU_HAN应助科研通管家采纳,获得30
23秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
24秒前
阿飘应助科研通管家采纳,获得10
24秒前
大个应助科研通管家采纳,获得10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778345
求助须知:如何正确求助?哪些是违规求助? 3323941
关于积分的说明 10216732
捐赠科研通 3039243
什么是DOI,文献DOI怎么找? 1667897
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758385