Three-dimensional inertial focusing based impedance cytometer enabling high-accuracy characterization of electrical properties of tumor cells

电阻抗 惯性参考系 信号(编程语言) 粒子(生态学) 材料科学 生物医学工程 工程类 声学 物理 计算机科学 电气工程 量子力学 海洋学 地质学 程序设计语言
作者
Chen Ni,Mingqi Yang,Shuai Yang,Zhixian Zhu,Chen Yao,Lin Jiang,Nan Xiang
出处
期刊:Lab on a Chip [Royal Society of Chemistry]
卷期号:24 (18): 4333-4343 被引量:4
标识
DOI:10.1039/d4lc00523f
摘要

The differences in the cross-sectional positions of cells in the detection area have a severe negative impact on achieving accurate characterization of the impedance spectra of cells. Herein, we proposed a three-dimensional (3D) inertial focusing based impedance cytometer integrating sheath fluid compression and inertial focusing for the high-accuracy electrical characterization and identification of tumor cells. First, we studied the effects of the particle initial position and the sheath fluid compression on particle focusing. Then, the relationship of the particle height and the signal-to-noise ratio (SNR) of the impedance signal was explored. The results showed that efficient single-line focusing of 7-20 μm particles close to the electrodes was achieved and impedance signals with a high SNR and a low coefficient of variation (CV) were obtained. Finally, the electrical properties of three types of tumor cells (A549, MDA-MB-231, and UM-UC-3 cells) were accurately characterized. Machine learning algorithms were implemented to accurately identify tumor cells based on the amplitude and phase opacities at multiple frequencies. Compared with traditional two-dimensional (2D) inertial focusing, the identification accuracy of A549, MDA-MB-231, and UM-UC-3 cells using our 3D inertial focusing increased by 57.5%, 36.4% and 36.6%, respectively. The impedance cytometer enables the detection of cells with a wide size range without causing clogging and obtains high SNR signals, improving applicability to different complex biological samples and cell identification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Treasure发布了新的文献求助10
刚刚
刚刚
Jasper应助1234645678采纳,获得10
1秒前
ghn123456789完成签到,获得积分10
2秒前
3秒前
兴奋的定帮应助cc采纳,获得10
3秒前
姜姜完成签到 ,获得积分10
4秒前
5秒前
奋斗的ning发布了新的文献求助10
5秒前
李子敬发布了新的文献求助10
7秒前
仓颉完成签到,获得积分10
7秒前
面膜发布了新的文献求助10
10秒前
10秒前
czx发布了新的文献求助10
10秒前
11秒前
11秒前
ding应助舍予有服采纳,获得10
13秒前
lele发布了新的文献求助10
14秒前
14秒前
含糊的雨安完成签到,获得积分10
16秒前
challenger发布了新的文献求助10
17秒前
dd完成签到,获得积分20
18秒前
18秒前
18秒前
whoare完成签到,获得积分20
19秒前
Treasure完成签到,获得积分10
20秒前
科研通AI2S应助ldyzz采纳,获得10
20秒前
whoare发布了新的文献求助10
21秒前
wsfy15完成签到 ,获得积分10
21秒前
22秒前
天天小女孩完成签到 ,获得积分10
22秒前
俭朴从安完成签到,获得积分10
23秒前
炫潮浪子完成签到,获得积分10
23秒前
斯文败类应助challenger采纳,获得10
25秒前
姜然完成签到,获得积分10
25秒前
25秒前
美好的黎云完成签到,获得积分10
26秒前
27秒前
柏忆南完成签到 ,获得积分10
29秒前
星星完成签到 ,获得积分10
29秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
China's State Ideology and the Three Gorges Dam 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903417
求助须知:如何正确求助?哪些是违规求助? 3448038
关于积分的说明 10852087
捐赠科研通 3173603
什么是DOI,文献DOI怎么找? 1753421
邀请新用户注册赠送积分活动 847764
科研通“疑难数据库(出版商)”最低求助积分说明 790374