Dual Redox‐active Covalent Organic Framework‐based Memristors for Highly‐efficient Neuromorphic Computing

神经形态工程学 记忆电阻器 对偶(语法数字) 氧化还原 计算机科学 计算机体系结构 材料科学 纳米技术 化学 人工智能 人工神经网络 电子工程 工程类 有机化学 文学类 艺术
作者
Qiongshan Zhang,Qiang Che,Dongchuang Wu,Yunjia Zhao,Yu Chen,Fu‐Zhen Xuan,Bin Zhang
出处
期刊:Angewandte Chemie [Wiley]
卷期号:63 (46) 被引量:1
标识
DOI:10.1002/anie.202413311
摘要

Abstract Organic memristors based on covalent organic frameworks (COFs) exhibit significant potential for future neuromorphic computing applications. The preparation of high‐quality COF nanosheets through appropriate structural design and building block selection is critical for the enhancement of memristor performance. In this study, a novel room‐temperature single‐phase method was used to synthesize Ta−Cu 3 COF, which contains two redox‐active units: trinuclear copper and triphenylamine. The resultant COF nanosheets were dispersed through acid‐assisted exfoliation and subsequently spin‐coated to fabricate a high‐quality COF film on an indium tin oxide (ITO) substrate. The synergistic effect of the dual redox‐active centers in the COF film, combined with its distinct crystallinity, significantly reduces the redox energy barrier, enabling the efficient modulation of 128 non‐volatile conductive states in the Al/Ta−Cu 3 COF/ITO memristor. Utilizing a convolutional neural network (CNN) based on these 128 conductance states, image recognition for ten representative campus landmarks was successfully executed, achieving a high recognition accuracy of 95.13 % after 25 training epochs. Compared to devices based on binary conductance states, the memristor with 128 conductance states exhibits a 45.56 % improvement in recognition accuracy and significantly enhances the efficiency of neuromorphic computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方法发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
Singularity应助L_univers采纳,获得10
1秒前
慕青应助万宁采纳,获得10
2秒前
2秒前
4秒前
小二郎应助yeyongchang_hit采纳,获得10
4秒前
5秒前
熊猫盖浇饭完成签到,获得积分10
5秒前
6秒前
6秒前
完美世界应助寒冷子轩采纳,获得10
6秒前
6秒前
琉璃岁月发布了新的文献求助10
8秒前
qq发布了新的文献求助10
10秒前
李健应助yanyan采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
hugeng发布了新的文献求助10
11秒前
15秒前
小李发布了新的文献求助20
15秒前
rmbsLHC发布了新的文献求助10
17秒前
cff发布了新的文献求助10
17秒前
19秒前
小二郎应助丸子采纳,获得10
20秒前
xliiii发布了新的文献求助20
20秒前
21秒前
21秒前
cccchan发布了新的文献求助10
21秒前
22秒前
23秒前
Jasper应助婌旎采纳,获得10
23秒前
壮观问寒发布了新的文献求助10
24秒前
善学以致用应助zzllsc采纳,获得30
24秒前
25秒前
北风完成签到,获得积分10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815115
求助须知:如何正确求助?哪些是违规求助? 3359118
关于积分的说明 10400037
捐赠科研通 3076704
什么是DOI,文献DOI怎么找? 1689964
邀请新用户注册赠送积分活动 813466
科研通“疑难数据库(出版商)”最低求助积分说明 767642