Modeling Paths and History for Temporal Knowledge Graph Reasoning

计算机科学 推论 加速 人工智能 图形 推理系统 路径(计算) 常识推理 基于模型的推理 机器学习 理论计算机科学 知识表示与推理 程序设计语言 操作系统
作者
Yue Chen,Yongzhong Huang
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4741391/v1
摘要

Abstract Knowledge Graph (KG) reasoning is a crucial task that discovers potential and unknown knowledge based on the existing knowledge. Temporal Knowledge Graph (TKG) reasoning is more challenging than KG reasoning because the additional temporal information needs to be handled. Previous TKG reasoning methods restrict the search space to avoid huge computational consumption, resulting in a decrease in accuracy. In order to improve the accuracy and efficiency of TKG reasoning, a model CMPH (Combination Model of Paths and History) is proposed, which consists of a path memory network and a history memory network. The former finds the paths in advance by a TKG path search algorithm and learns to memorize the recurrent pattern for reasoning, which prevents path search at inference stage. The latter adopts efficient encoder-decoder architecture to learn the features of historical events in TKG, which can avoid tackling a large number of structural dependencies and increase the reasoning accuracy. To take the advantages of these two types of memory networks, a gate component is designed to integrate them for better performance. Extensive experiments on four real-world datasets demonstrate that the proposed model obtains substantial performance and efficiency improvement for the TKG reasoning tasks. Especially, it achieves up to 8.6% and 11.8% improvements in MRR and hit@1 respectively, and up to 21 times speedup at inference stage comparing to the state-of-the-art baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多宝鱼发布了新的文献求助10
2秒前
NexusExplorer应助lvsehx采纳,获得10
3秒前
4秒前
小二郎应助zzzkyt采纳,获得10
5秒前
7秒前
8秒前
10秒前
yiyi131发布了新的文献求助10
12秒前
闪耀吨吨完成签到,获得积分10
12秒前
13秒前
傢誠发布了新的文献求助30
15秒前
zzzkyt发布了新的文献求助10
15秒前
captain完成签到,获得积分10
15秒前
15秒前
wol007发布了新的文献求助10
16秒前
情怀应助钟宇轩采纳,获得10
16秒前
李健的小迷弟应助modesty采纳,获得10
17秒前
17秒前
泠泠月上完成签到,获得积分10
17秒前
木头人发布了新的文献求助10
18秒前
Ava应助lessormoto采纳,获得10
18秒前
梁溪公主发布了新的文献求助10
19秒前
魑魅魍魉发布了新的文献求助30
20秒前
20秒前
21秒前
22秒前
深情不弱完成签到 ,获得积分10
23秒前
23秒前
zc发布了新的文献求助20
23秒前
cqhecq完成签到,获得积分10
25秒前
董竹君发布了新的文献求助10
26秒前
Lucas应助咕噜咕噜采纳,获得10
26秒前
科研通AI5应助傢誠采纳,获得10
26秒前
梁溪公主完成签到,获得积分20
27秒前
28秒前
modesty发布了新的文献求助10
29秒前
29秒前
小芋泥发布了新的文献求助10
30秒前
30秒前
SciGPT应助Aer采纳,获得10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787762
求助须知:如何正确求助?哪些是违规求助? 3333338
关于积分的说明 10261468
捐赠科研通 3049082
什么是DOI,文献DOI怎么找? 1673412
邀请新用户注册赠送积分活动 801891
科研通“疑难数据库(出版商)”最低求助积分说明 760402