Model-based estimation of individual-level social determinants of health and its applications in All of Us

一致性 估计 健康的社会决定因素 一致相关系数 联想(心理学) 小区域估算 相关性 医学 老年学 人口学 统计 计量经济学 心理学 数学 公共卫生 社会学 经济 护理部 管理 几何学 内科学 心理治疗师
作者
Bo Young Kim,Rebecca Anthopolos,Hyungrok Do,Judy Zhong
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
标识
DOI:10.1093/jamia/ocae168
摘要

Abstract Objectives We introduce a widely applicable model-based approach for estimating individual-level Social Determinants of Health (SDoH) and evaluate its effectiveness using the All of Us Research Program. Materials and Methods Our approach utilizes aggregated SDoH datasets to estimate individual-level SDoH, demonstrated with examples of no high school diploma (NOHSDP) and no health insurance (UNINSUR) variables. Models are estimated using American Community Survey data and applied to derive individual-level estimates for All of Us participants. We assess concordance between model-based SDoH estimates and self-reported SDoHs in All of Us and examine associations with undiagnosed hypertension and diabetes. Results Compared to self-reported SDoHs, the area under the curve for NOHSDP is 0.727 (95% CI, 0.724-0.730) and for UNINSUR is 0.730 (95% CI, 0.727-0.733) among the 329 074 All of Us participants, both significantly higher than aggregated SDoHs. The association between model-based NOHSDP and undiagnosed hypertension is concordant with those estimated using self-reported NOHSDP, with a correlation coefficient of 0.649. Similarly, the association between model-based NOHSDP and undiagnosed diabetes is concordant with those estimated using self-reported NOHSDP, with a correlation coefficient of 0.900. Discussion and Conclusion The model-based SDoH estimation method offers a scalable and easily standardized approach for estimating individual-level SDoHs. Using the All of Us dataset, we demonstrate reasonable concordance between model-based SDoH estimates and self-reported SDoHs, along with consistent associations with health outcomes. Our findings also underscore the critical role of geographic contexts in SDoH estimation and in evaluating the association between SDoHs and health outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
六氟合铂酸氙完成签到 ,获得积分10
4秒前
4秒前
树德完成签到,获得积分10
8秒前
风中的觅儿完成签到 ,获得积分10
13秒前
14秒前
Lucas应助kingcoming采纳,获得10
15秒前
Ava应助张zz采纳,获得30
15秒前
子凡应助wly1111采纳,获得10
18秒前
lai完成签到,获得积分20
18秒前
白色梨花发布了新的文献求助30
21秒前
jim完成签到,获得积分10
27秒前
HK完成签到,获得积分10
27秒前
希望天下0贩的0应助52pry采纳,获得10
29秒前
30秒前
30秒前
wly1111完成签到,获得积分10
31秒前
CipherSage应助端庄的碧萱采纳,获得10
34秒前
张zz发布了新的文献求助30
34秒前
厄页石页完成签到,获得积分10
35秒前
科研通AI5应助白开水采纳,获得10
38秒前
39秒前
42秒前
43秒前
44秒前
小蘑菇应助kevinchan2009采纳,获得10
46秒前
51秒前
52pry发布了新的文献求助10
57秒前
爱听歌的大地完成签到 ,获得积分10
57秒前
星河长明完成签到,获得积分10
58秒前
58秒前
59秒前
59秒前
kingcoming发布了新的文献求助10
1分钟前
kevinchan2009发布了新的文献求助10
1分钟前
inging发布了新的文献求助10
1分钟前
酷波er应助欢呼流沙采纳,获得10
1分钟前
1分钟前
inging完成签到,获得积分10
1分钟前
TongKY完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780525
求助须知:如何正确求助?哪些是违规求助? 3326007
关于积分的说明 10225002
捐赠科研通 3041057
什么是DOI,文献DOI怎么找? 1669166
邀请新用户注册赠送积分活动 799019
科研通“疑难数据库(出版商)”最低求助积分说明 758667