已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A hybrid approach for modeling bicycle crash frequencies: Integrating random forest based SHAP model with random parameter negative binomial regression model

随机森林 可解释性 梯度升压 支持向量机 阿卡克信息准则 负二项分布 统计 均方误差 Boosting(机器学习) 机器学习 计算机科学 数学 人工智能 泊松分布
作者
Hongliang Ding,Ruiqi Wang,Tiantian Chen,N.N. Sze,Hyungchul Chung,Ni Dong
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:208: 107778-107778
标识
DOI:10.1016/j.aap.2024.107778
摘要

To effectively capture and explain complex, nonlinear relationships within bicycle crash frequency data and account for unobserved heterogeneity simultaneously, this study proposes a new hybrid framework that combines the Random Forest-based SHapley Additive exPlanations (RF-SHAP) method with a random parameter negative binomial regression model (RPNB). First, four machine learning algorithms, including random forest (RF), support vector machine (SVM), gradient boosting machine (GBM), and Extreme Gradient Boosting (XGBoost), were compared for variable importance calculation. The RF algorithm, demonstrating the best performance, was selected and integrated into an interpretable machine learning-based method (i.e., RF-SHAP) to provide an interpretable measure of each variable's impact, which is critical for understanding the model's predictions results. Finally, the RF-SHAP method was combined with the RPNB model to explore individual-specific variations that influence crash frequency predictions. Using 288 traffic analysis zones (TAZs) in Greater London and various regional risk factors for bicycle crash frequency, the proposed framework was validated. The results indicate that the proposed framework demonstrates improved prediction accuracy and better factor interpretation in analyzing bicycle crash frequency. The model exhibits consistent Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) values, indicating its reliable explanatory power. Furthermore, there is a significant improvement in the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). This suggests that the proposed model effectively combines the explanatory power of statistical models with the forecasting powers of data-driven models. The interpretability of SHAP values, coupled with the causal insights from RPNB, provides policymakers with actionable information to develop targeted interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
景__完成签到,获得积分10
刚刚
一只熊完成签到 ,获得积分10
刚刚
只如初完成签到,获得积分10
刚刚
clcl完成签到,获得积分10
1秒前
善学以致用应助牛芳草采纳,获得10
1秒前
雨rain完成签到 ,获得积分10
2秒前
Morale发布了新的文献求助10
3秒前
啊哒吸哇完成签到,获得积分10
4秒前
Ljy完成签到 ,获得积分10
4秒前
4秒前
王_123123123123w完成签到 ,获得积分10
5秒前
Cheng完成签到 ,获得积分10
5秒前
小宝旅行记完成签到,获得积分10
5秒前
鹿小新完成签到 ,获得积分0
7秒前
风趣的灵枫完成签到 ,获得积分10
7秒前
YEM完成签到 ,获得积分10
7秒前
帅气的沧海完成签到 ,获得积分10
8秒前
Sunny完成签到 ,获得积分10
8秒前
9秒前
未语的阳光完成签到 ,获得积分10
12秒前
桐桐应助Morale采纳,获得10
12秒前
恋雅颖月完成签到 ,获得积分10
13秒前
xielunwen发布了新的文献求助10
14秒前
15秒前
万崽秋秋糖完成签到 ,获得积分10
15秒前
wangye完成签到 ,获得积分10
15秒前
豪豪完成签到,获得积分10
16秒前
17秒前
17秒前
朴素飞薇完成签到 ,获得积分10
17秒前
季春九完成签到,获得积分10
18秒前
诸乘风完成签到 ,获得积分10
18秒前
123完成签到 ,获得积分10
18秒前
Jepsen完成签到 ,获得积分10
18秒前
Setlla完成签到 ,获得积分10
18秒前
优雅的帅哥完成签到 ,获得积分10
19秒前
不胜玖完成签到 ,获得积分10
19秒前
季春九发布了新的文献求助10
20秒前
顺利的寒云完成签到 ,获得积分10
20秒前
20秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843103
求助须知:如何正确求助?哪些是违规求助? 3385372
关于积分的说明 10540151
捐赠科研通 3105937
什么是DOI,文献DOI怎么找? 1710776
邀请新用户注册赠送积分活动 823737
科研通“疑难数据库(出版商)”最低求助积分说明 774264

今日热心研友

小茄子爷爷
2 10
斯寜
2
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10