河马信号通路
雅普1
癌变
转移
下调和上调
癌症
癌症研究
生物
信号转导
细胞生物学
转录因子
基因
遗传学
作者
Xiaoli Liu,Bonan Chen,Fuda Xie,Kit Yee Wong,Alvin Ho‐Kwan Cheung,Jinglin Zhang,Qian Wu,Canbin Fang,Jintao Hu,Shouyu Wang,Dazhi Xu,Jianwu Chen,Yuzhi Wang,Chi Chun Wong,Huarong Chen,William Ka Kei Wu,Jun Yu,Michael W.Y. Chan,Chi Man Tsang,Kwok Wai Lo
出处
期刊:Cancer Research
[American Association for Cancer Research]
日期:2024-07-24
卷期号:84 (21): 3574-3588
被引量:2
标识
DOI:10.1158/0008-5472.can-23-3074
摘要
Abstract The Hippo–YAP1 pathway is an evolutionally conserved signaling cascade that controls organ size and tissue regeneration. Dysregulation of Hippo–YAP1 signaling promotes initiation and progression of several types of cancer, including gastric cancer. As the Hippo–YAP1 pathway regulates expression of thousands of genes, it is important to establish which target genes contribute to the oncogenic program driven by YAP1 to identify strategies to circumvent it. In this study, we identified a vital role of forkhead box protein 4 (FOXP4) in YAP1-driven gastric carcinogenesis by maintaining stemness and promoting peritoneal metastasis. Loss of FOXP4 impaired gastric cancer spheroid formation and reduced stemness marker expression, whereas FOXP4 upregulation potentiated cancer cell stemness. RNA sequencing analysis revealed SOX12 as a downstream target of FOXP4, and functional studies established that SOX12 supports stemness in YAP1-induced carcinogenesis. A small-molecule screen identified 42-(2-tetrazolyl) rapamycin as a FOXP4 inhibitor, and targeting FOXP4 suppressed gastric cancer tumor growth and enhanced the efficacy of 5-fluorouracil chemotherapy in vivo. Collectively, these findings revealed that FOXP4 upregulation by YAP1 in gastric cancer regulates stemness and tumorigenesis by upregulating SOX12. Targeting the YAP1–FOXP4–SOX12 axis represents a potential therapeutic strategy for gastric cancer. Significance: Hippo–YAP1 signaling maintains stemness in gastric cancer by upregulating FOXP4, identifying FOXP4 as a stemness biomarker and therapeutic target that could help improve patient outcomes.
科研通智能强力驱动
Strongly Powered by AbleSci AI