Associative Learning and Active Inference

推论 结合属性 人工智能 计算机科学 联想学习 机器学习 心理学 认知科学 认知心理学 数学 纯数学
作者
Petr Anokhin,Artyom Sorokin,Mikhail Burtsev,Karl J. Friston
出处
期刊:Neural Computation [The MIT Press]
卷期号:36 (12): 2602-2635
标识
DOI:10.1162/neco_a_01711
摘要

Abstract Associative learning is a behavioral phenomenon in which individuals develop connections between stimuli or events based on their co-occurrence. Initially studied by Pavlov in his conditioning experiments, the fundamental principles of learning have been expanded on through the discovery of a wide range of learning phenomena. Computational models have been developed based on the concept of minimizing reward prediction errors. The Rescorla-Wagner model, in particular, is a well-known model that has greatly influenced the field of reinforcement learning. However, the simplicity of these models restricts their ability to fully explain the diverse range of behavioral phenomena associated with learning. In this study, we adopt the free energy principle, which suggests that living systems strive to minimize surprise or uncertainty under their internal models of the world. We consider the learning process as the minimization of free energy and investigate its relationship with the Rescorla-Wagner model, focusing on the informational aspects of learning, different types of surprise, and prediction errors based on beliefs and values. Furthermore, we explore how well-known behavioral phenomena such as blocking, overshadowing, and latent inhibition can be modeled within the active inference framework. We accomplish this by using the informational and novelty aspects of attention, which share similar ideas proposed by seemingly contradictory models such as Mackintosh and Pearce-Hall models. Thus, we demonstrate that the free energy principle, as a theoretical framework derived from first principles, can integrate the ideas and models of associative learning proposed based on empirical experiments and serve as a framework for a better understanding of the computational processes behind associative learning in the brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳佟若剑完成签到,获得积分10
刚刚
Raine完成签到,获得积分10
1秒前
宇宙飞船2436完成签到,获得积分10
1秒前
娟儿完成签到 ,获得积分10
3秒前
3秒前
无私小小完成签到,获得积分10
5秒前
可爱冰绿完成签到,获得积分10
5秒前
livra1058完成签到,获得积分10
6秒前
天明完成签到,获得积分10
6秒前
7秒前
pwang_lixin完成签到,获得积分10
10秒前
friend516完成签到 ,获得积分10
10秒前
10秒前
道友等等我完成签到,获得积分0
11秒前
Behappy完成签到 ,获得积分10
14秒前
15秒前
怕黑鲂完成签到 ,获得积分10
16秒前
李超完成签到,获得积分10
18秒前
pwang_ecust完成签到,获得积分10
20秒前
隐形曼青应助失眠夏山采纳,获得10
20秒前
小白完成签到,获得积分10
21秒前
华仔应助xiaohongmao采纳,获得10
21秒前
欣慰的舞仙完成签到,获得积分10
30秒前
欣慰的觅儿完成签到 ,获得积分10
32秒前
jialinzhou完成签到,获得积分10
32秒前
9977完成签到,获得积分10
32秒前
酷波er应助青青河边草采纳,获得10
32秒前
溯风完成签到 ,获得积分0
33秒前
余生9979完成签到 ,获得积分10
34秒前
飞云发布了新的文献求助10
36秒前
濮阳盼曼完成签到,获得积分10
36秒前
36秒前
fengliurencai完成签到,获得积分10
36秒前
柚子完成签到 ,获得积分10
37秒前
英俊的沛容完成签到 ,获得积分10
37秒前
37秒前
无尘完成签到 ,获得积分10
37秒前
111完成签到 ,获得积分10
38秒前
38秒前
英勇含烟完成签到,获得积分10
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795626
求助须知:如何正确求助?哪些是违规求助? 3340699
关于积分的说明 10301167
捐赠科研通 3057247
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805478
科研通“疑难数据库(出版商)”最低求助积分说明 762626