AI-Based Anomaly Detection for Clinical-Grade Histopathological Diagnostics

异常检测 异常(物理) 人工智能 医学 模式识别(心理学) 计算机科学 物理 凝聚态物理
作者
Jonas Dippel,Niklas Prenißl,Julius Hense,Philipp Liznerski,Tobias Winterhoff,Simon Schallenberg,Marius Kloft,Oliver Buchstab,David Horst,Maximilian Alber,Lukas Ruff,Klaus-Robert Müller,Frederick Klauschen
标识
DOI:10.1056/aioa2400468
摘要

BackgroundWhile previous studies of artificial intelligence (AI) have shown its potential for diagnosing diseases using imaging data, clinical implementation lags behind. AI models require training with large numbers of examples, which are only available for common diseases. In clinical reality, however, the majority of diseases are less frequent, and current AI models overlook or misclassify them. An effective, comprehensive technique is needed for the full spectrum of real-world diagnoses.MethodsWe collected two large real-world datasets of gastrointestinal (GI) biopsies, which are prototypical of the problem. Herein, the 10 most common findings accounted for approximately 90% of cases, whereas the remaining 10% contained 56 disease entities, including many cancers. Seventeen million histological images from 5423 cases were used for training and evaluation. We propose a deep anomaly detection (AD) approach that only requires training data from common diseases to also detect all less frequent diseases.ResultsWithout specific training for the diseases, our best-performing model reliably detected a broad spectrum of infrequent ("anomalous") pathologies with 95.0% (stomach) and 91.0% (colon) area under the receiver operating characteristic curve (AUROC) and was able to generalize between scanners and hospitals. Cancers were detected with 97.7% (stomach) and 96.9% (colon) AUROC. Heatmaps reliably highlighted anomalous areas and can guide pathologists during the diagnostic process.ConclusionsIn this study, we establish the first effective clinical application of AI-based AD in histopathology and demonstrate high performance on a unique real-world collection of GI biopsies. The proposed novel AD can flag anomalous cases, facilitate case prioritization, and reduce missed diagnoses, providing critical support for pathologists. By design, it can be expected to detect any pathological alteration including rare primary or metastatic cancers in GI biopsies. To our knowledge, no other published AI tool is capable of zero-shot pan-cancer detection. AD may enhance the safety of AI models in histopathology, thereby driving AI adoption and automation in routine diagnostics and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
刚刚
yijijue完成签到,获得积分10
1秒前
科研通AI5应助曾经问雁采纳,获得10
1秒前
1秒前
清研发布了新的文献求助10
1秒前
2秒前
2秒前
羊羊呀应助chenmeimei2012采纳,获得10
2秒前
独特听芹完成签到,获得积分10
2秒前
领导范儿应助苽峰采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
6秒前
乐乐应助staev采纳,获得10
6秒前
听书人发布了新的文献求助10
6秒前
摇一摇完成签到,获得积分10
7秒前
大白发布了新的文献求助10
7秒前
7秒前
7秒前
dione给dione的求助进行了留言
7秒前
yy完成签到,获得积分10
8秒前
9秒前
感动水杯完成签到 ,获得积分10
9秒前
浮游应助星辰亦会累采纳,获得10
10秒前
10秒前
Akim应助Karen_Liu采纳,获得10
10秒前
Pretrial完成签到 ,获得积分10
11秒前
12秒前
han发布了新的文献求助10
12秒前
哈牛柚子鹿完成签到,获得积分10
12秒前
jianwuzhou发布了新的文献求助10
12秒前
13秒前
13秒前
Logan184完成签到 ,获得积分10
13秒前
jwj发布了新的文献求助10
14秒前
tianguan发布了新的文献求助10
15秒前
从容道罡完成签到,获得积分10
15秒前
依依发布了新的文献求助10
16秒前
17秒前
生尽证提发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011950
求助须知:如何正确求助?哪些是违规求助? 4253264
关于积分的说明 13253336
捐赠科研通 4055969
什么是DOI,文献DOI怎么找? 2218515
邀请新用户注册赠送积分活动 1228110
关于科研通互助平台的介绍 1150405