AI-Based Anomaly Detection for Clinical-Grade Histopathological Diagnostics

异常检测 异常(物理) 人工智能 医学 模式识别(心理学) 计算机科学 物理 凝聚态物理
作者
Jonas Dippel,Niklas Prenißl,Julius Hense,Philipp Liznerski,Tobias Winterhoff,Simon Schallenberg,Marius Kloft,Oliver Buchstab,David Horst,Maximilian Alber,Lukas Ruff,Klaus‐Robert Mueller,Frederick Klauschen
标识
DOI:10.1056/aioa2400468
摘要

BackgroundWhile previous studies of artificial intelligence (AI) have shown its potential for diagnosing diseases using imaging data, clinical implementation lags behind. AI models require training with large numbers of examples, which are only available for common diseases. In clinical reality, however, the majority of diseases are less frequent, and current AI models overlook or misclassify them. An effective, comprehensive technique is needed for the full spectrum of real-world diagnoses.MethodsWe collected two large real-world datasets of gastrointestinal (GI) biopsies, which are prototypical of the problem. Herein, the 10 most common findings accounted for approximately 90% of cases, whereas the remaining 10% contained 56 disease entities, including many cancers. Seventeen million histological images from 5423 cases were used for training and evaluation. We propose a deep anomaly detection (AD) approach that only requires training data from common diseases to also detect all less frequent diseases.ResultsWithout specific training for the diseases, our best-performing model reliably detected a broad spectrum of infrequent ("anomalous") pathologies with 95.0% (stomach) and 91.0% (colon) area under the receiver operating characteristic curve (AUROC) and was able to generalize between scanners and hospitals. Cancers were detected with 97.7% (stomach) and 96.9% (colon) AUROC. Heatmaps reliably highlighted anomalous areas and can guide pathologists during the diagnostic process.ConclusionsIn this study, we establish the first effective clinical application of AI-based AD in histopathology and demonstrate high performance on a unique real-world collection of GI biopsies. The proposed novel AD can flag anomalous cases, facilitate case prioritization, and reduce missed diagnoses, providing critical support for pathologists. By design, it can be expected to detect any pathological alteration including rare primary or metastatic cancers in GI biopsies. To our knowledge, no other published AI tool is capable of zero-shot pan-cancer detection. AD may enhance the safety of AI models in histopathology, thereby driving AI adoption and automation in routine diagnostics and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美姿驳回了小奕应助
刚刚
Rondab应助男子无才便是德采纳,获得10
刚刚
思源应助YimingChen采纳,获得30
1秒前
豪宝好饱关注了科研通微信公众号
2秒前
一条蛆发布了新的文献求助10
2秒前
3秒前
aaron9898完成签到,获得积分10
3秒前
领导范儿应助苦瓜采纳,获得10
3秒前
miemie66发布了新的文献求助10
3秒前
英俊的汉堡完成签到,获得积分10
5秒前
npknpk完成签到,获得积分10
6秒前
9秒前
9秒前
头发同学完成签到,获得积分10
9秒前
9秒前
CodeCraft应助coffe逗采纳,获得10
9秒前
10秒前
orixero应助wsl采纳,获得10
10秒前
云墨发布了新的文献求助10
13秒前
15秒前
盘尼西林完成签到,获得积分10
16秒前
舒心冷珍发布了新的文献求助10
16秒前
冰激凌的夏天完成签到,获得积分20
16秒前
16秒前
17秒前
捌贰陆柒发布了新的文献求助10
17秒前
差生文具多完成签到 ,获得积分10
18秒前
悠悠发布了新的文献求助10
18秒前
打打应助kk采纳,获得10
19秒前
任老九发布了新的文献求助30
19秒前
20秒前
20秒前
20秒前
我是老大应助动听平露采纳,获得10
20秒前
小草完成签到,获得积分10
20秒前
owldan完成签到 ,获得积分10
21秒前
wsl发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4006565
求助须知:如何正确求助?哪些是违规求助? 3546393
关于积分的说明 11295911
捐赠科研通 3282081
什么是DOI,文献DOI怎么找? 1809886
邀请新用户注册赠送积分活动 885656
科研通“疑难数据库(出版商)”最低求助积分说明 811078