Human lung cancer classification and comprehensive analysis using different machine learning techniques

人工智能 支持向量机 随机森林 肺癌 机器学习 计算机科学 朴素贝叶斯分类器 模式识别(心理学) 多层感知器 分类器(UML) 决策树 感知器 人工神经网络 医学 病理
作者
K. Priyadarshini,Ahamed Ali S,K. Sivanandam,Manjunathan Alagarsamy
出处
期刊:Microscopy Research and Technique [Wiley]
标识
DOI:10.1002/jemt.24682
摘要

Abstract Lung cancer is the most common causes of death among all cancer‐related diseases. A lung scan examination of the patient is the primary diagnostic technique. This scan analysis pertains to an MRI, CT, or X‐ray. The automated classification of lung cancer is difficult due to the involvement of multiple steps in imaging patients' lungs. In this manuscript, human lung cancer classification and comprehensive analysis using different machine learning techniques is proposed. Initially, the input images are gathered using lung cancer dataset. The proposed method processes these images using image‐processing techniques, and further machine learning techniques are utilized for categorization. Seven different classifiers including the k‐nearest neighbors (KNN), support vector machine (SVM), decision tree (DT), multinomial naive Bayes (MNB), stochastic gradient descent (SGD), random forest (RF), and multi‐layer perceptron (MLP) classifier are used, which classifies the lung cancer as malignant and benign. The performance of the proposed approach is examined using performances metrics, like positive predictive value, accuracy, sensitivity, and f‐score are evaluated. Among them, the performance of the MLP classifier provides 25.34%, 45.39%, 15.39%, 41.28%, 22.17%, and 12.12% higher accuracy than other KNN, SVM, DT, MNB, SGD, and RF respectively. Research Highlights Lung cancer is a leading cause of cancer‐related death. Imaging (MRI, CT, and X‐ray) aids diagnosis. Automated classification of lung cancer faces challenges due to complex imaging steps. This study proposes human lung cancer classification using diverse machine learning techniques. Input images from lung cancer dataset undergo image processing and machine learning. Classifiers like k‐nearest neighbors, support vector machine, decision tree, multinomial naive Bayes, stochastic gradient descent, random forest, and multi‐layer perceptron (MLP) classify cancer types; MLP excels in accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sssssss完成签到 ,获得积分10
1秒前
朱先生完成签到 ,获得积分10
1秒前
1秒前
清沐完成签到 ,获得积分10
2秒前
科研猫头鹰完成签到,获得积分10
6秒前
dennisysz发布了新的文献求助10
6秒前
11完成签到,获得积分10
7秒前
纯真丁一郎完成签到,获得积分10
7秒前
zyc完成签到 ,获得积分10
8秒前
NN应助yyds采纳,获得10
9秒前
dddd完成签到 ,获得积分10
10秒前
燕子应助科研通管家采纳,获得10
11秒前
iNk应助科研通管家采纳,获得20
11秒前
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
燕子应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Akim应助11采纳,获得10
12秒前
共享精神应助王一疯采纳,获得30
13秒前
小点点cy_完成签到 ,获得积分10
14秒前
快乐的小乌龟完成签到,获得积分10
16秒前
17秒前
20秒前
小红完成签到,获得积分10
21秒前
Be-a rogue发布了新的文献求助10
21秒前
21秒前
dywen完成签到,获得积分10
23秒前
wqk完成签到,获得积分10
24秒前
hans发布了新的文献求助10
24秒前
28秒前
粗犷的鹏飞完成签到 ,获得积分10
34秒前
38秒前
i_jueloa完成签到,获得积分10
38秒前
linxe发布了新的文献求助10
41秒前
bkagyin应助CWT采纳,获得10
41秒前
科目三应助犹豫曲奇采纳,获得10
43秒前
43秒前
biofresh完成签到 ,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777429
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211653
捐赠科研通 3038155
什么是DOI,文献DOI怎么找? 1667159
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103