已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TIGER: Training Inductive Graph Neural Network for Large-Scale Knowledge Graph Reasoning

图形 计算机科学 人工智能 人工神经网络 机器学习 理论计算机科学
作者
Kai Wang,Yuwei Xu,Siqiang Luo
出处
期刊:Proceedings of the VLDB Endowment [Association for Computing Machinery]
卷期号:17 (10): 2459-2472
标识
DOI:10.14778/3675034.3675039
摘要

Knowledge Graph (KG) Reasoning plays a vital role in various applications by predicting missing facts from existing knowledge. Inductive KG reasoning approaches based on Graph Neural Networks (GNNs) have shown impressive performance, particularly when reasoning with unseen entities and dynamic KGs. However, such state-of-the-art KG reasoning approaches encounter efficiency and scalability challenges on large-scale KGs due to the high computational costs associated with subgraph extraction - a key component in inductive KG reasoning. To address the computational challenge, we introduce TIGER, an inductive GNN training framework tailored for large-scale KG reasoning. TIGER employs a novel, efficient streaming procedure that facilitates rapid subgraph slicing and dynamic subgraph caching to minimize the cost of subgraph extraction. The fundamental challenge in TIGER lies in the optimal subgraph slicing problem, which we prove to be NP-hard. We propose a novel two-stage algorithm SiGMa to solve the problem practically. By decoupling the complicated problem into two classical ones, SiGMa achieves low computational complexity and high slice reuse. We also propose four new benchmarks for robust evaluation of large-scale inductive KG reasoning, the biggest of which performs on the Freebase KG (encompassing 86M entities, 285M edges). Through comprehensive experiments on state-of-the-art GNN-based KG reasoning models, we demonstrate that TIGER significantly reduces the running time of subgraph extraction, achieving an average 3.7× speedup relative to the basic training procedure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小凯完成签到 ,获得积分10
1秒前
笨笨如之完成签到 ,获得积分10
1秒前
清樾完成签到 ,获得积分10
1秒前
1秒前
精明的尔蓝完成签到,获得积分10
3秒前
元小夏完成签到,获得积分10
4秒前
TTT0530完成签到,获得积分10
4秒前
7秒前
榴莲姑娘完成签到 ,获得积分10
7秒前
赤丶赤发布了新的文献求助10
8秒前
HXZ完成签到,获得积分10
8秒前
zheng完成签到 ,获得积分10
8秒前
ilaragakki完成签到,获得积分20
11秒前
13秒前
ilaragakki发布了新的文献求助10
16秒前
17秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得30
18秒前
英俊的铭应助谦让映菡采纳,获得10
18秒前
简单诗翠完成签到 ,获得积分10
18秒前
CHAIZH发布了新的文献求助10
23秒前
李健应助松松采纳,获得10
23秒前
科研通AI6应助ilaragakki采纳,获得10
25秒前
25秒前
王某完成签到 ,获得积分10
25秒前
丁老三完成签到 ,获得积分10
27秒前
27秒前
31秒前
31秒前
WBH36323完成签到,获得积分10
31秒前
qian发布了新的文献求助30
31秒前
鸣蜩十三完成签到,获得积分10
32秒前
32秒前
我不知道该叫啥完成签到,获得积分10
33秒前
123123123发布了新的文献求助30
34秒前
兔兔兔兔t完成签到,获得积分10
35秒前
大个应助粥粥采纳,获得10
35秒前
Akim应助粥粥采纳,获得10
35秒前
天尽头发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4552469
求助须知:如何正确求助?哪些是违规求助? 3981686
关于积分的说明 12327487
捐赠科研通 3651386
什么是DOI,文献DOI怎么找? 2011063
邀请新用户注册赠送积分活动 1046184
科研通“疑难数据库(出版商)”最低求助积分说明 934740