The Use of Artificial Intelligence for the Prediction of Periprosthetic Joint Infection Following Aseptic Revision Total Knee Arthroplasty

医学 假体周围 接收机工作特性 关节置换术 无菌处理 外科 回顾性队列研究 机器学习 内科学 计算机科学
作者
Christian Klemt,Ingwon Yeo,Mike Harvey,Jillian C. Burns,Christopher M. Melnic,Akachimere Uzosike,Young‐Min Kwon
出处
期刊:Journal of Knee Surgery [Thieme Medical Publishers (Germany)]
卷期号:37 (02): 158-166 被引量:13
标识
DOI:10.1055/s-0043-1761259
摘要

Abstract Periprosthetic joint infection (PJI) following revision total knee arthroplasty (TKA) for aseptic failure is associated with poor outcomes, patient morbidity, and high health care expenditures. The aim of this study was to develop novel machine learning algorithms for the prediction of PJI following revision TKA for patients with aseptic indications for revision surgery. A single-institution database consisting of 1,432 consecutive revision TKA patients with aseptic etiologies was retrospectively identified. The patient cohort included 208 patients (14.5%) who underwent re-revision surgery for PJI. Three machine learning algorithms (artificial neural networks, support vector machines, k-nearest neighbors) were developed to predict this outcome and these models were assessed by discrimination, calibration, and decision curve analysis. This is a retrospective study. Among the three machine learning models, the neural network model achieved the best performance across discrimination (area under the receiver operating characteristic curve = 0.78), calibration, and decision curve analysis. The strongest predictors for PJI following revision TKA for aseptic reasons were prior open procedure prior to revision surgery, drug abuse, obesity, and diabetes. This study utilized machine learning as a tool for the prediction of PJI following revision TKA for aseptic failure with excellent performance. The validated machine learning models can aid surgeons in patient-specific risk stratifying to assist in preoperative counseling and clinical decision making for patients undergoing aseptic revision TKA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星完成签到 ,获得积分10
2秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
典雅问寒应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
典雅问寒应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
pluto应助Dawn采纳,获得40
7秒前
8秒前
大力水香发布了新的文献求助10
8秒前
zjx完成签到,获得积分10
9秒前
深情安青应助wyq采纳,获得10
9秒前
11秒前
13秒前
菡123456发布了新的文献求助10
15秒前
qiao应助坏坏的快乐采纳,获得10
17秒前
19秒前
21秒前
科研通AI5应助阔达的柠檬采纳,获得10
25秒前
mili完成签到,获得积分20
26秒前
wyq发布了新的文献求助10
26秒前
简单澜发布了新的文献求助10
27秒前
MchemG应助如意的书南采纳,获得10
33秒前
天天快乐应助如意的书南采纳,获得10
33秒前
爆米花应助简单澜采纳,获得10
35秒前
35秒前
隐形曼青应助康谨采纳,获得10
36秒前
39秒前
卡他发布了新的文献求助10
39秒前
科研通AI2S应助青雉采纳,获得10
42秒前
43秒前
mili发布了新的文献求助10
45秒前
汉堡包应助虚幻花卷采纳,获得10
47秒前
Pursue完成签到,获得积分10
47秒前
Jasper应助今夜无人入眠采纳,获得10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780200
求助须知:如何正确求助?哪些是违规求助? 3325511
关于积分的说明 10223282
捐赠科研通 3040677
什么是DOI,文献DOI怎么找? 1668962
邀请新用户注册赠送积分活动 798897
科研通“疑难数据库(出版商)”最低求助积分说明 758634