A Novel Gas Recognition Algorithm for Gas Sensor Array Combining Savitzky–Golay Smooth and Image Conversion Route

二进制戈莱码 计算机科学 模式识别(心理学) 人工智能 分类器(UML) 人工神经网络 稳健性(进化) 算法 生物化学 基因 化学
作者
Xi Wang,Chen Qian,Zhikai Zhao,Jiaming Li,Mingzhi Jiao
出处
期刊:Chemosensors [Multidisciplinary Digital Publishing Institute]
卷期号:11 (2): 96-96 被引量:13
标识
DOI:10.3390/chemosensors11020096
摘要

In recent years, the application of Deep Neural Networks to gas recognition has been developing. The classification performance of the Deep Neural Network depends on the efficient representation of the input data samples. Therefore, a variety of filtering methods are firstly adopted to smooth filter the gas sensing response data, which can remove redundant information and greatly improve the performance of the classifier. Additionally, the optimization experiment of the Savitzky–Golay filtering algorithm is carried out. After that, we used the Gramian Angular Summation Field (GASF) method to encode the gas sensing response data into two-dimensional sensing images. In addition, data augmentation technology is used to reduce the impact of small sample numbers on the classifier and improve the robustness and generalization ability of the model. Then, combined with fine-tuning of the GoogLeNet neural network, which owns the ability to automatically learn the characteristics of deep samples, the classification of four gases has finally been realized: methane, ethanol, ethylene, and carbon monoxide. Through setting a variety of different comparison experiments, it is known that the Savitzky–Golay smooth filtering pretreatment method effectively improves the recognition accuracy of the classifier, and the gas recognition network adopted is superior to the fine-tuned ResNet50, Alex-Net, and ResNet34 networks in both accuracy and sample processing times. Finally, the highest recognition accuracy of the classification results of our proposed route is 99.9%, which is better than other similar work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li发布了新的文献求助10
刚刚
星空完成签到,获得积分10
3秒前
科目三应助dhan采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
科研通AI2S应助hh采纳,获得10
6秒前
xiaoyue完成签到,获得积分10
6秒前
小池由希完成签到 ,获得积分10
7秒前
7秒前
7秒前
今后应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
所所应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
8秒前
xjXD应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
充电宝应助li采纳,获得10
9秒前
安在哉发布了新的文献求助10
9秒前
小吴同学发布了新的文献求助10
9秒前
13秒前
13秒前
14秒前
张涛发布了新的文献求助10
14秒前
15秒前
舒适新蕾发布了新的文献求助10
16秒前
xiaoyue发布了新的文献求助20
16秒前
全可冥完成签到 ,获得积分10
19秒前
英姑应助2345采纳,获得10
19秒前
sxp1031发布了新的文献求助10
20秒前
22秒前
24秒前
JamesPei应助张维采纳,获得10
26秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870718
求助须知:如何正确求助?哪些是违规求助? 3412843
关于积分的说明 10681538
捐赠科研通 3137260
什么是DOI,文献DOI怎么找? 1730823
邀请新用户注册赠送积分活动 834403
科研通“疑难数据库(出版商)”最低求助积分说明 781154