Fast orthogonal locality-preserving projections for unsupervised feature selection

地点 计算机科学 判别式 子空间拓扑 人工智能 特征选择 模式识别(心理学) 图形 规范(哲学) 正规化(语言学) 算法 理论计算机科学 哲学 语言学 政治学 法学
作者
Jianyong Zhu,Jingwei Chen,Bin Xu,Hui Yang,Feiping Nie
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:531: 100-113 被引量:9
标识
DOI:10.1016/j.neucom.2023.02.021
摘要

Graph-based sparsity learning is one of the most successful unsupervised feature selection methods that has been widely adopted in many real-world applications. However, traditional graph-based unsupervised feature selection methods have several drawbacks: (1) being time-consuming and unable to deal with large-scale problems; (2) having difficulty tuning the regularization parameter with the sparsity regularization term; and (3) being unable to find explicit solutions owing to the limitation of sparsity, that is, feature selection with the ℓ2,1-norm constrained problem. Thus, this paper proposes OLPPFS, a method to preserve the local geometric structure within the feature subspace by imposing the ℓ2,0-norm constraint. First, the linear mapping capability of the proposed model is enhanced using locality-preserving projections (LPPs), whichpreserve the local and global geometric manifold structure of the data while enhancing the ability to reconstruct data. Second, the graph-embedding learning method can accelerate the construction of a sparsity affinity graph and describe the intrinsic structure of the dataset well. More importantly, we propose a method for solving a projection matrix with the ℓ2,0-norm constrained, which can accurately select a explicit group of discriminative feature subsets. This method can yield a more accurate sparse projection matrix than the ℓ2,1-norm. We also adopt FOLPPFS, an effective anchor-based strategy to further accelerate our model with two flexible options. Extensive experiments on eight datasets demonstrate that the proposed method is superior to the other methods and can preserve a better local geometric structure of the dataset with less time consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhangxinxin完成签到 ,获得积分10
1秒前
1秒前
aaaaaa发布了新的文献求助10
3秒前
3秒前
元羞花发布了新的文献求助10
4秒前
ZZQ发布了新的文献求助10
5秒前
5秒前
斯文败类应助fengcosky采纳,获得10
5秒前
du发布了新的文献求助10
6秒前
秀丽的小懒虫完成签到,获得积分10
6秒前
6秒前
7秒前
9秒前
希望天下0贩的0应助wj29595采纳,获得10
9秒前
壹元侑子完成签到,获得积分10
9秒前
10秒前
思源应助喜悦灵雁采纳,获得10
10秒前
ding应助文静的冷雪采纳,获得30
11秒前
dudu不吃榴莲完成签到,获得积分20
12秒前
13秒前
13秒前
15秒前
Z1完成签到,获得积分10
15秒前
夕诙发布了新的文献求助30
18秒前
矢车菊发布了新的文献求助30
18秒前
烟花应助美丽的宝马采纳,获得10
18秒前
忧郁的猕猴桃完成签到,获得积分10
19秒前
YOLO完成签到 ,获得积分10
19秒前
小雨点完成签到 ,获得积分10
20秒前
任性依玉完成签到,获得积分10
20秒前
SYLH应助ZZQ采纳,获得10
21秒前
老麦完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
25秒前
26秒前
黄瑞关注了科研通微信公众号
27秒前
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841795
求助须知:如何正确求助?哪些是违规求助? 3383855
关于积分的说明 10531414
捐赠科研通 3103947
什么是DOI,文献DOI怎么找? 1709462
邀请新用户注册赠送积分活动 823238
科研通“疑难数据库(出版商)”最低求助积分说明 773856