亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodal Reaction: Information Modulation for Cross-Modal Representation Learning

计算机科学 嵌入 人工智能 机器学习 情态动词 滤波器(信号处理) 代表(政治) 过程(计算) 计算机视觉 政治学 政治 操作系统 化学 高分子化学 法学
作者
Ying Zeng,Sijie Mai,Wenjun Yan,Haifeng Hu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 2178-2191 被引量:6
标识
DOI:10.1109/tmm.2023.3293335
摘要

In multimodal machine learning, proper handling of cross-modal information is essential for obtaining an ideal joint embedding. Despite the progress made by recent fusion strategies, we hold that before the fusion stage, the unimodal representation inevitably contains noise that may hinder the correct learning of cross-modal dynamics and affect multimodal fusion. It is worthwhile to investigate how the information is being utilized and how to make the full use of it. Rethinking the process of leveraging multiple modalities for the joint embedding, multimodal learning can be regarded as a chemical reaction process and two steps may benefit learning: 1) purification to filter impurity, and 2) catalyst to facilitate learning. In this paper, we propose a Multimodal Information Modulation (MIM) learning framework to modulate the contribution and utilization of the cross-modal information, which identifies and handles the ‘impurity’ and ‘catalyst’ in multimodal learning. Specifically, a Unimodal Purification Network (UPN) is proposed to identify and explicitly filter out the impurity within each modality before fusion, which reduces the possibility of learning incorrect cross-modal dynamics. Besides, based on the intuition that useful information has the potential in the guidance of model updating, it plays a role to facilitate learning, which is achieved by the design of the Knowledge Guidance Scheme (KGS) considering both the intra- and inter-modal scenarios. Different to a majority of works that emphasize the role of useful information in the fusion and inference stage, KGS considers its potential role in assisting the representation learning of weaker components. Besides, it fully considers the modality dominance problem and sample variations for optimization. In short, MIM manages to modulate the useless/useful information to minimize/emphasize their contribution. Experimental results verify the effectiveness of the proposed method. The codes are available at https://github.com/zengy268/MIM .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助jojo采纳,获得10
1秒前
鹏虫虫发布了新的文献求助10
5秒前
7秒前
jojo发布了新的文献求助10
12秒前
暴走小面包完成签到 ,获得积分10
13秒前
17秒前
哈尔滨完成签到 ,获得积分20
18秒前
某某发布了新的文献求助10
21秒前
制冷剂完成签到 ,获得积分10
24秒前
28秒前
科研通AI6应助某某采纳,获得10
29秒前
鹏虫虫发布了新的文献求助10
34秒前
Ashao完成签到 ,获得积分10
36秒前
36秒前
FashionBoy应助现代初珍采纳,获得10
37秒前
42秒前
freq完成签到 ,获得积分10
42秒前
伯云完成签到,获得积分10
42秒前
44秒前
Double发布了新的文献求助10
45秒前
luck完成签到,获得积分10
46秒前
ceeray23发布了新的文献求助20
46秒前
爆米花应助TK采纳,获得10
47秒前
现代初珍发布了新的文献求助10
49秒前
luck发布了新的文献求助20
50秒前
54秒前
56秒前
乐乐应助某某采纳,获得30
58秒前
山野发布了新的文献求助10
59秒前
Lunatic发布了新的文献求助10
1分钟前
科研通AI6应助飞快的冬天采纳,获得10
1分钟前
科研通AI6应助zhu采纳,获得10
1分钟前
1分钟前
鹏虫虫发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助150
1分钟前
1分钟前
1分钟前
cccc4869完成签到,获得积分10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
某某发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438344
求助须知:如何正确求助?哪些是违规求助? 4549600
关于积分的说明 14220652
捐赠科研通 4470256
什么是DOI,文献DOI怎么找? 2449799
邀请新用户注册赠送积分活动 1440739
关于科研通互助平台的介绍 1417053