DiamondNet: A Neural-Network-Based Heterogeneous Sensor Attentive Fusion for Human Activity Recognition

计算机科学 利用 杠杆(统计) 人工智能 模式 活动识别 卷积神经网络 编码器 机器学习 深度学习 模式识别(心理学) 社会科学 计算机安全 操作系统 社会学
作者
Yida Zhu,Haiyong Luo,Runze Chen,Fang Zhao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 15321-15331 被引量:6
标识
DOI:10.1109/tnnls.2023.3285547
摘要

With the proliferation of intelligent sensors integrated into mobile devices, fine-grained human activity recognition (HAR) based on lightweight sensors has emerged as a useful tool for personalized applications. Although shallow and deep learning algorithms have been proposed for HAR problems in the past decades, these methods have limited capability to exploit semantic features from multiple sensor types. To address this limitation, we propose a novel HAR framework, DiamondNet, which can create heterogeneous multisensor modalities, denoise, extract, and fuse features from a fresh perspective. In DiamondNet, we leverage multiple 1-D convolutional denoising autoencoders (1-D-CDAEs) to extract robust encoder features. We further introduce an attention-based graph convolutional network to construct new heterogeneous multisensor modalities, which adaptively exploit the potential relationship between different sensors. Moreover, the proposed attentive fusion subnet, which jointly employs a global-attention mechanism and shallow features, effectively calibrates different-level features of multiple sensor modalities. This approach amplifies informative features and provides a comprehensive and robust perception for HAR. The efficacy of the DiamondNet framework is validated on three public datasets. The experimental results demonstrate that our proposed DiamondNet outperforms other state-of-the-art baselines, achieving remarkable and consistent accuracy improvements. Overall, our work introduces a new perspective on HAR, leveraging the power of multiple sensor modalities and attention mechanisms to significantly improve the performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助BINGBING1230采纳,获得30
刚刚
刚刚
1秒前
顺利毕业发布了新的文献求助10
1秒前
超级幻梅发布了新的文献求助10
1秒前
2秒前
2秒前
orixero应助Violet采纳,获得10
2秒前
3秒前
3秒前
4秒前
4秒前
Chanbaii发布了新的文献求助10
4秒前
4秒前
乐观的海发布了新的文献求助10
4秒前
77发布了新的文献求助10
5秒前
5秒前
心心完成签到,获得积分10
5秒前
嘉欣完成签到,获得积分10
6秒前
6秒前
liangliang关注了科研通微信公众号
6秒前
6秒前
6秒前
Hello应助冲浪男孩226采纳,获得10
7秒前
7秒前
小二郎应助czshare采纳,获得10
7秒前
所所应助玉宇琼楼采纳,获得10
8秒前
英俊延恶发布了新的文献求助10
8秒前
8秒前
丘比特应助皮皮怪采纳,获得10
8秒前
8秒前
牵绊发布了新的文献求助10
9秒前
顾矜应助爱吃年糕采纳,获得10
9秒前
Akim应助冲浪男孩226采纳,获得10
9秒前
金东寒完成签到,获得积分10
9秒前
乐乐应助lzr采纳,获得10
10秒前
10秒前
jassica9发布了新的文献求助30
10秒前
10秒前
大个应助乔1采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286706
求助须知:如何正确求助?哪些是违规求助? 4439351
关于积分的说明 13821187
捐赠科研通 4321274
什么是DOI,文献DOI怎么找? 2371784
邀请新用户注册赠送积分活动 1367335
关于科研通互助平台的介绍 1330812