An intelligent optimization method of exercisers' visual comfort assessment in gymnasium

亮度 人工智能 计算机科学 视觉感受 可视化 感知 计算机视觉 模拟 心理学 神经科学
作者
Ligang Shi,Jinghan Qiu,Ruinan Zhang,Yuqing Li,Zhaojing Yang,Xinzhu Qi,Lulu Tao,Siying Li,Weiming Liu
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:76: 107135-107135
标识
DOI:10.1016/j.jobe.2023.107135
摘要

Exercisers' visual comfort is an essential factor in successful gymnasium design. Existing research has identified viable indicators of visual comfort and the explained the interaction between humans and the light environment. However, it remains difficult to accurately quantify the impact of the daylight environment on human perception. Given the particularity of exercisers' behavior and activities in gymnasiums, the current general assessment model for exercisers' visual perception is lacking. Taking a university gymnasium in Harbin as a case, this study aimed to establish a computational method for assessing visual comfort from the human-centric perspective via mutual authentication between questionnaire and physiological indices and luminance. An analysis of the questionnaire responses revealed that the synthetical visual evaluation (SVE) was an appropriate visual evaluation index. Machine learning was applied to quantify the correlation between various luminance levels and human perception to assess exercisers' level of visual comfort. Multilayer Perceptron models with the best-fit optimization were selected by artificial neural networks (ANNs) to determine the most optimized visual comfort assessment model. Based on the ANNs, the correlation coefficient between luminance, SVE, and physiological indicator ranged from 85% to 90%. According to the genetic algorithm, the average luminance of the entire field of view (Lfov) was 55–135 cd/m2, the average luminance of the target area (Lt) was 82–375 cd/m2, and the average luminance of the window area (Lw) was 960–1950 cd/m2, for a comfortable visualization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QQ完成签到 ,获得积分10
1秒前
逸灵素完成签到 ,获得积分10
1秒前
2秒前
lynn完成签到,获得积分10
4秒前
cdercder应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
cdercder应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
cdercder应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
cdercder应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
cdercder应助科研通管家采纳,获得10
6秒前
zcc111完成签到,获得积分10
10秒前
贾方硕完成签到,获得积分10
10秒前
迅速的萧完成签到 ,获得积分10
19秒前
黄锐完成签到 ,获得积分10
19秒前
22秒前
支雨泽完成签到,获得积分10
24秒前
冷清之发布了新的文献求助10
27秒前
沧海云完成签到 ,获得积分10
27秒前
annieduan完成签到 ,获得积分10
28秒前
cdercder应助66采纳,获得10
29秒前
星夜疏爱美食完成签到 ,获得积分10
30秒前
B哥完成签到,获得积分10
31秒前
犹豫的忆枫完成签到,获得积分10
32秒前
科研通AI5应助辣椒面采纳,获得10
35秒前
内向苡完成签到,获得积分10
35秒前
縤雨完成签到 ,获得积分10
39秒前
隐形白开水完成签到,获得积分10
41秒前
zxc167完成签到,获得积分10
42秒前
科研通AI2S应助yiyimx采纳,获得10
46秒前
冷清之完成签到 ,获得积分10
48秒前
48秒前
辣椒面发布了新的文献求助10
53秒前
xjtuwang0618完成签到,获得积分10
54秒前
乐乐完成签到,获得积分10
55秒前
emxzemxz完成签到 ,获得积分10
59秒前
白日焰火完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776069
求助须知:如何正确求助?哪些是违规求助? 3321646
关于积分的说明 10206508
捐赠科研通 3036726
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841