Depth video data-enabled predictions of longitudinal dairy cow body weight using thresholding and Mask R-CNN algorithms

阈值 人工智能 分割 数学 计算机科学 空齿鹿属 模式识别(心理学) 统计 算法 图像(数学) 生物 生态学
作者
Ye Bi,Leticia M. Campos,Jin Wang,Haipeng Yu,M.D. Hanigan,Gota Morota
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2307.01383
摘要

Monitoring cow body weight is crucial to support farm management decisions due to its direct relationship with the growth, nutritional status, and health of dairy cows. Cow body weight is a repeated trait, however, the majority of previous body weight prediction research only used data collected at a single point in time. Furthermore, the utility of deep learning-based segmentation for body weight prediction using videos remains unanswered. Therefore, the objectives of this study were to predict cow body weight from repeatedly measured video data, to compare the performance of the thresholding and Mask R-CNN deep learning approaches, to evaluate the predictive ability of body weight regression models, and to promote open science in the animal science community by releasing the source code for video-based body weight prediction. A total of 40,405 depth images and depth map files were obtained from 10 lactating Holstein cows and 2 non-lactating Jersey cows. Three approaches were investigated to segment the cow's body from the background, including single thresholding, adaptive thresholding, and Mask R-CNN. Four image-derived biometric features, such as dorsal length, abdominal width, height, and volume, were estimated from the segmented images. On average, the Mask-RCNN approach combined with a linear mixed model resulted in the best prediction coefficient of determination and mean absolute percentage error of 0.98 and 2.03%, respectively, in the forecasting cross-validation. The Mask-RCNN approach was also the best in the leave-three-cows-out cross-validation. The prediction coefficients of determination and mean absolute percentage error of the Mask-RCNN coupled with the linear mixed model were 0.90 and 4.70%, respectively. Our results suggest that deep learning-based segmentation improves the prediction performance of cow body weight from longitudinal depth video data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满一手完成签到 ,获得积分10
1秒前
代扁扁完成签到 ,获得积分10
1秒前
juliar完成签到 ,获得积分10
7秒前
你才是小哭包完成签到 ,获得积分10
7秒前
微雨若,,完成签到 ,获得积分10
9秒前
luan完成签到,获得积分10
10秒前
优秀的媚颜完成签到 ,获得积分10
16秒前
tzjz_zrz完成签到,获得积分10
16秒前
woshiwuziq完成签到 ,获得积分10
18秒前
小花生完成签到 ,获得积分10
21秒前
cq_2完成签到,获得积分10
24秒前
25秒前
Damon完成签到 ,获得积分10
25秒前
现代大神完成签到,获得积分10
27秒前
狼来了aas完成签到,获得积分10
31秒前
彩色靖儿完成签到 ,获得积分10
32秒前
wxy1111完成签到 ,获得积分10
32秒前
34秒前
折颜发布了新的文献求助10
38秒前
隐形谷秋完成签到,获得积分20
42秒前
蓝莓酱蘸橘子完成签到 ,获得积分10
44秒前
彩色映雁发布了新的文献求助10
47秒前
洛神之心1124完成签到,获得积分10
53秒前
喝酸奶不舔盖完成签到 ,获得积分10
54秒前
木光完成签到,获得积分10
55秒前
想自由完成签到,获得积分10
56秒前
白日焰火完成签到 ,获得积分10
57秒前
稳重母鸡完成签到 ,获得积分10
1分钟前
12完成签到 ,获得积分10
1分钟前
H-kevin.完成签到 ,获得积分10
1分钟前
马香芦完成签到,获得积分10
1分钟前
Doris完成签到 ,获得积分10
1分钟前
huangyi完成签到 ,获得积分10
1分钟前
熠熠完成签到 ,获得积分10
1分钟前
1分钟前
Dr_Chu完成签到 ,获得积分10
1分钟前
羊羊完成签到 ,获得积分10
1分钟前
季风气候完成签到 ,获得积分10
1分钟前
1分钟前
lx840518完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495297
关于积分的说明 11076114
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783312
邀请新用户注册赠送积分活动 867589
科研通“疑难数据库(出版商)”最低求助积分说明 800839