A Vehicle Path Planning and Prediction Algorithm Based on Attention Mechanism for Complex Traffic Intersection Collaboration in Intelligent Transportation

交叉口(航空) 智能交通系统 计算机科学 机制(生物学) 路径(计算) 运输工程 人工智能 算法 模拟 工程类 计算机网络 哲学 认识论
作者
Yán Li,Lei Feng,Chengpei Tang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:3
标识
DOI:10.1109/tits.2024.3512618
摘要

In the development of smart cities, the transportation system plays a crucial role, with road congestion being particularly prominent under conditions of long-distance travel and high traffic volumes. This paper proposes a Vehicle Path Planning and Prediction Algorithm (VPPPA) based on an attention mechanism for complex traffic intersections collaboration in intelligent transportation systems. Our proposed algorithm is designed to plan and analyze traffic flow at urban road intersections. Firstly, attention mechanisms are used to balance the number of vehicles at different traffic intersections, with a particular focus on alleviating congestion at critical intersections during peak hours. Secondly, a Convolutional Neural Network (CNN) is employed to capture the spatial relationships between different road segments and intersections. Moreover, the Long Short-Term Memory and CNN (LSTM-CNN) architecture effectively captures the important temporal correlations in the traffic flow data. Thirdly, the spatiotemporal attention mechanism of vehicles captures the local spatial correlation characteristics between the target intersection and adjacent intersections along the traffic network. Finally, our proposed VPPPA model leverages the advantages of the LSTM-CNN architecture, enhancing learning efficiency during the training process and extracting valuable information. Experimental results show that the proposed VPPPA has significant advantages and greater efficiency in reducing average travel time and improving throughput across various intersections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿正嗖啪发布了新的文献求助10
1秒前
打打应助东单的单车采纳,获得10
1秒前
gaogao发布了新的文献求助10
1秒前
爱吃草莓橙子完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
冷静新烟完成签到 ,获得积分10
3秒前
3秒前
清脆颤完成签到 ,获得积分10
4秒前
SZ发布了新的文献求助10
4秒前
Decy完成签到 ,获得积分10
4秒前
7秒前
自信彩虹完成签到,获得积分20
8秒前
米糊发布了新的文献求助30
8秒前
昌升发布了新的文献求助10
8秒前
彭于晏应助蘧蘧采纳,获得10
9秒前
9秒前
顺利的边牧完成签到 ,获得积分10
10秒前
猪猪hero应助科研通管家采纳,获得150
11秒前
herococa应助科研通管家采纳,获得10
12秒前
herococa应助科研通管家采纳,获得10
12秒前
弱水应助科研通管家采纳,获得30
12秒前
科研通AI6应助科研通管家采纳,获得30
12秒前
华仔应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
Koalas应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
程雪完成签到,获得积分10
13秒前
maxinyu完成签到 ,获得积分10
13秒前
ff999应助TTT采纳,获得20
13秒前
13秒前
14秒前
14秒前
14秒前
琛琛多发文章完成签到,获得积分10
14秒前
上官若男应助昌升采纳,获得10
14秒前
15秒前
gigi发布了新的文献求助10
16秒前
丘比特应助波比不菜采纳,获得30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073477
求助须知:如何正确求助?哪些是违规求助? 4293605
关于积分的说明 13378934
捐赠科研通 4114986
什么是DOI,文献DOI怎么找? 2253333
邀请新用户注册赠送积分活动 1258119
关于科研通互助平台的介绍 1191028