A Vehicle Path Planning and Prediction Algorithm Based on Attention Mechanism for Complex Traffic Intersection Collaboration in Intelligent Transportation

交叉口(航空) 智能交通系统 计算机科学 机制(生物学) 路径(计算) 运输工程 人工智能 算法 模拟 工程类 计算机网络 哲学 认识论
作者
Yán Li,Lei Feng,Chengpei Tang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tits.2024.3512618
摘要

In the development of smart cities, the transportation system plays a crucial role, with road congestion being particularly prominent under conditions of long-distance travel and high traffic volumes. This paper proposes a Vehicle Path Planning and Prediction Algorithm (VPPPA) based on an attention mechanism for complex traffic intersections collaboration in intelligent transportation systems. Our proposed algorithm is designed to plan and analyze traffic flow at urban road intersections. Firstly, attention mechanisms are used to balance the number of vehicles at different traffic intersections, with a particular focus on alleviating congestion at critical intersections during peak hours. Secondly, a Convolutional Neural Network (CNN) is employed to capture the spatial relationships between different road segments and intersections. Moreover, the Long Short-Term Memory and CNN (LSTM-CNN) architecture effectively captures the important temporal correlations in the traffic flow data. Thirdly, the spatiotemporal attention mechanism of vehicles captures the local spatial correlation characteristics between the target intersection and adjacent intersections along the traffic network. Finally, our proposed VPPPA model leverages the advantages of the LSTM-CNN architecture, enhancing learning efficiency during the training process and extracting valuable information. Experimental results show that the proposed VPPPA has significant advantages and greater efficiency in reducing average travel time and improving throughput across various intersections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光影发布了新的文献求助10
1秒前
老实怀蝶完成签到,获得积分10
1秒前
第八维发布了新的文献求助10
1秒前
CodeCraft应助洛小叶采纳,获得10
1秒前
2秒前
乔一乔发布了新的文献求助10
3秒前
田様应助圆彰七大采纳,获得10
3秒前
3秒前
4秒前
生锈的柳叶刀完成签到,获得积分10
5秒前
打击8完成签到 ,获得积分10
6秒前
令狐晓博完成签到,获得积分0
7秒前
wzz完成签到,获得积分10
8秒前
8秒前
王木木完成签到 ,获得积分10
9秒前
ding应助chennian采纳,获得10
9秒前
悦耳若云发布了新的文献求助10
10秒前
mm完成签到 ,获得积分10
11秒前
CodeCraft应助啦啦啦啦采纳,获得10
11秒前
11秒前
12秒前
13秒前
13秒前
SciGPT应助小王不爱上班采纳,获得10
14秒前
15秒前
洛天初音完成签到,获得积分10
15秒前
15秒前
17秒前
18秒前
行7发布了新的文献求助10
18秒前
情怀应助烩面大师采纳,获得10
18秒前
邵洋完成签到,获得积分10
19秒前
小拉机发布了新的文献求助10
19秒前
YIYI发布了新的文献求助10
20秒前
冷冰凉发布了新的文献求助10
20秒前
Lyl发布了新的文献求助10
20秒前
YYX发布了新的文献求助10
20秒前
20秒前
21秒前
可爱的函函应助玲儿采纳,获得10
21秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838587
求助须知:如何正确求助?哪些是违规求助? 3380977
关于积分的说明 10516425
捐赠科研通 3100505
什么是DOI,文献DOI怎么找? 1707547
邀请新用户注册赠送积分活动 821794
科研通“疑难数据库(出版商)”最低求助积分说明 772959